1
|
Matteucci F, Pavletić P, Bonifazi A, Del Bello F, Giorgioni G, Piergentili A, Amantini C, Zeppa L, Sabato E, Vistoli G, Garland R, Yano H, Castagna M, Mammoli V, Cappellacci L, Piergentili A, Quaglia W. New Arylpiperazines as Potent and Selective Dopamine D4 Receptor Ligands Potentially Useful to Treat Glioblastoma. J Med Chem 2025; 68:7441-7458. [PMID: 40156554 DOI: 10.1021/acs.jmedchem.4c03150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
The dopamine D4 receptor (D4R) has recently been proposed as an emerging target for treating glioblastoma (GBM). In this article, new piperazine ligands, analogues of the potent and selective D4R lead compounds 9 and 10, were prepared and evaluated for their affinity at D2-like receptor subtypes. The most promising results were obtained by replacing the N4-phenyl terminal of 9 with a naphthyl group. Indeed, α-naphthyl derivative 15 proved to have four times higher affinity for D4R than lead 9, whereas β-naphthyl compound 16 was about tenfold more selective for D4R than 9. These compounds behaved as D4R antagonists in both Gi/Go activation and β-arrestin2 recruitment assays. Interestingly, both decreased cell viability dose-dependently and altered the cell cycle of U87 MG, T98G, and U251 MG human GBM cell lines after 48 h treatment, inducing an increase in ROS levels and time-dependent mitochondrial depolarization.
Collapse
Affiliation(s)
- Federica Matteucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Pegi Pavletić
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Alessandro Bonifazi
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, Immunopathology and Molecular Medicine Unit, University of Camerino, via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Laura Zeppa
- School of Biosciences and Veterinary Medicine, Immunopathology and Molecular Medicine Unit, University of Camerino, via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Emanuela Sabato
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milano, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milano, Italy
| | - Rian Garland
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Hideaki Yano
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Monica Castagna
- Center for Drug Discovery and Development-DMPK, Aptuit, an Evotec company, via A. Fleming, 4, 37135 Verona, Italy
| | - Valerio Mammoli
- Center for Drug Discovery and Development-DMPK, Aptuit, an Evotec company, via A. Fleming, 4, 37135 Verona, Italy
| | - Loredana Cappellacci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Alessia Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| |
Collapse
|
2
|
Zeng X, Sheng Z, Zhang Y, Xiao J, Li Y, Zhang J, Xu G, Jia J, Wang M, Li L. The therapeutic potential of glycyrrhizic acid and its metabolites in neurodegenerative diseases: Evidence from animal models. Eur J Pharmacol 2024; 985:177098. [PMID: 39510337 DOI: 10.1016/j.ejphar.2024.177098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Neurodegenerative diseases, mostly occurring in the elderly population, are the significant cause of disability and death worldwide. The pathogenesis of neurodegenerative diseases is still largely unknown yet, although they have been continuously explored. Thus, there is still a lack of safe, effective, and low side effect drugs in clinical practice for the treatment of neurodegenerative diseases. Pieces of accumulating evidence have demonstrated that licorice played neuroprotective roles in various neurodegenerative diseases. In the past two decades, increasing studies have indicated that glycyrrhizic acid (GL), the main active ingredient from traditional Chinese medicine licorice (widely used in the food industry) and a triterpenoid saponin with multiple pharmacological effects (such as anti-oxidant, anti-inflammatory, and immune regulation), and its metabolites (glycyrrhetinic acid and carbenoxolone) play a neuroprotective role in a range of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease and epilepsy. This review will elaborate on the multiple neuroprotective mechanisms of GL and its metabolites in this series of diseases, aiming to provide a basis for further research on these protective drugs for neurodegenerative diseases and their clinical application. In summary, GL may be a promising candidate drug for the therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China; Department of Biochemistry and Molecular Biology, Jiaxing University Medical College, Jiaxing, 314001, China; Institute of Forensic Science, Jiaxing University, Jiaxing, 314001, China
| | - Zixuan Sheng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Yuqian Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Jing Xiao
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Yang Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Jiaping Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China
| | - Guangtao Xu
- Institute of Forensic Science, Jiaxing University, Jiaxing, 314001, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, 314001, China.
| | - Min Wang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, 314001, China.
| | - Li Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, 314001, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, 314001, China.
| |
Collapse
|
3
|
Giorgioni G, Bonifazi A, Botticelli L, Cifani C, Matteucci F, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Giannella M, Piergentili A, Piergentili A, Quaglia W, Del Bello F. Advances in drug design and therapeutic potential of selective or multitarget 5-HT1A receptor ligands. Med Res Rev 2024; 44:2640-2706. [PMID: 38808959 DOI: 10.1002/med.22049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
5-HT1A receptor (5-HT1A-R) is a serotoninergic G-protein coupled receptor subtype which contributes to several physiological processes in both central nervous system and periphery. Despite being the first 5-HT-R identified, cloned and studied, it still represents a very attractive target in drug discovery and continues to be the focus of a myriad of drug discovery campaigns due to its involvement in numerous neuropsychiatric disorders. The structure-activity relationship studies (SAR) performed over the last years have been devoted to three main goals: (i) design and synthesis of 5-HT1A-R selective/preferential ligands; (ii) identification of 5-HT1A-R biased agonists, differentiating pre- versus post-synaptic agonism and signaling cellular mechanisms; (iii) development of multitarget compounds endowed with well-defined poly-pharmacological profiles targeting 5-HT1A-R along with other serotonin receptors, serotonin transporter (SERT), D2-like receptors and/or enzymes, such as acetylcholinesterase and phosphodiesterase, as a promising strategy for the management of complex psychiatric and neurodegenerative disorders. In this review, medicinal chemistry aspects of ligands acting as selective/preferential or multitarget 5-HT1A-R agonists and antagonists belonging to different chemotypes and developed in the last 7 years (2017-2023) have been discussed. The development of chemical and pharmacological 5-HT1A-R tools for molecular imaging have also been described. Finally, the pharmacological interest of 5-HT1A-R and the therapeutic potential of ligands targeting this receptor have been considered.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Luca Botticelli
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Federica Matteucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | | | - Mario Giannella
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Alessia Piergentili
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Wilma Quaglia
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Fabio Del Bello
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
4
|
Salomón-Flores MK, Viviano-Posadas AO, Valdes-García J, López-Guerrero V, Martínez-Otero D, Barroso-Flores J, German-Acacio JM, Bazany-Rodríguez IJ, Dorazco-González A. Optical sensing of L-dihydroxy-phenylalanine in water by a high-affinity molecular receptor involving cooperative binding of a metal coordination bond and boronate-diol. Dalton Trans 2024; 53:16541-16556. [PMID: 39327887 DOI: 10.1039/d4dt02108h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Selective recognition and sensing of catecholamine-based neurotransmitters by fluorescent synthetic receptors capable of operating in pure water is a central topic of modern supramolecular chemistry that impacts biological and analytical chemistry. Despite advances achieved in the recognition of some neurotransmitters such as dopamine, little effort has been invested in the optical recognition of other neurotransmitters of paramount importance in biochemistry and medicinal chemistry such as the drug L-dihydroxy-phenylalanine (levodopa). Herein, a cationic Cu(II)-terpyridine complex bearing an intramolecular fluorescent quinolinium ring covalently linked to phenylboronic acid (CuL1) was synthesized, structurally described by single-crystal X-ray diffraction and studied in-depth as a fluorescent receptor for neurotransmitters in water. The complex CuL1 was designed to act as a receptor for levodopa through two Lewis acids of different natures (Cu(II) and B atoms) as cooperative binding points. The receptor CuL1 was found to have a strongly acidified -B(OH)2 group (pKa = 6.2) and exceptionally high affinity for levodopa (K = 4.8 × 106 M-1) with selectivity over other related neurotransmitters such as dopamine, epinephrine, norepinephrine and nucleosides in the micromolar concentration range at physiological pH. Such levodopa affinity/selectivity for a boronic acid-based receptor in water is still rare. On the basis of spectroscopic tools (11B NMR, UV-vis, EPR, and fluorescence), high-resolution ESI-MS, crystal structure, and DFT calculations, the interaction mode of CuL1 with levodopa is proposed in a 1 : 1 model using two-point recognition involving a boronate-catechol esterification and a coordination bond Cu(II)-carboxylate. Furthermore, a visual sensing ensemble was constructed using CuL1 and the commercial fluorescent dye eosin Y. Levodopa is efficiently detected by the displacement of the eosin Y bound to the Cu(II)-receptor, monitoring its green emission. The use of Cu(II)-boronate complexes for fast and selective neurotransmitter sensing was unexplored until now.
Collapse
Affiliation(s)
- María K Salomón-Flores
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, México, 04510, CDMX, Mexico.
| | - Alejandro O Viviano-Posadas
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, México, 04510, CDMX, Mexico.
| | - Josue Valdes-García
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, México, 04510, CDMX, Mexico.
| | - Víctor López-Guerrero
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, México, 04510, CDMX, Mexico.
| | - Diego Martínez-Otero
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, México, 04510, CDMX, Mexico.
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Instituto de Química, Universidad Nacional Autónoma de México, Carretera Toluca-Atlacomulco Km 14.5, C. P. 50200, Toluca, Estado de México, Mexico
| | - Joaquín Barroso-Flores
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, México, 04510, CDMX, Mexico.
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Instituto de Química, Universidad Nacional Autónoma de México, Carretera Toluca-Atlacomulco Km 14.5, C. P. 50200, Toluca, Estado de México, Mexico
| | - Juan M German-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, CP 14000, Mexico
| | - Iván J Bazany-Rodríguez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria CDMX, 04510 México, Mexico
| | - Alejandro Dorazco-González
- Institute of Chemistry, National Autonomous University of Mexico, Ciudad Universitaria, México, 04510, CDMX, Mexico.
| |
Collapse
|
5
|
Arroyo-Urea S, Nazarova AL, Carrión-Antolí Á, Bonifazi A, Battiti FO, Lam JH, Newman AH, Katritch V, García-Nafría J. A bitopic agonist bound to the dopamine 3 receptor reveals a selectivity site. Nat Commun 2024; 15:7759. [PMID: 39237617 PMCID: PMC11377762 DOI: 10.1038/s41467-024-51993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
Although aminergic GPCRs are the target for ~25% of approved drugs, developing subtype selective drugs is a major challenge due to the high sequence conservation at their orthosteric binding site. Bitopic ligands are covalently joined orthosteric and allosteric pharmacophores with the potential to boost receptor selectivity and improve current medications by reducing off-target side effects. However, the lack of structural information on their binding mode impedes rational design. Here we determine the cryo-EM structure of the hD3R:GαOβγ complex bound to the D3R selective bitopic agonist FOB02-04A. Structural, functional and computational analyses provide insights into its binding mode and point to a new TM2-ECL1-TM1 region, which requires the N-terminal ordering of TM1, as a major determinant of subtype selectivity in aminergic GPCRs. This region is underexploited in drug development, expands the established secondary binding pocket in aminergic GPCRs and could potentially be used to design novel and subtype selective drugs.
Collapse
Affiliation(s)
- Sandra Arroyo-Urea
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
- Laboratory of Advanced Microscopy (LMA), University of Zaragoza, Zaragoza, Spain
| | - Antonina L Nazarova
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Ángela Carrión-Antolí
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
- Laboratory of Advanced Microscopy (LMA), University of Zaragoza, Zaragoza, Spain
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland, USA
| | - Francisco O Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland, USA
| | - Jordy Homing Lam
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland, USA
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain.
- Laboratory of Advanced Microscopy (LMA), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
6
|
Chang JC, Chang HS, Chao YC, Huang CS, Lin CH, Wu ZS, Chang HJ, Liu CS, Chuang CS. Formoterol Acting via β2-Adrenoreceptor Restores Mitochondrial Dysfunction Caused by Parkinson's Disease-Related UQCRC1 Mutation and Improves Mitochondrial Homeostasis Including Dynamic and Transport. BIOLOGY 2024; 13:231. [PMID: 38666843 PMCID: PMC11048601 DOI: 10.3390/biology13040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Formoterol, a β2-adrenergic receptor (β2AR) agonist, shows promise in various diseases, but its effectiveness in Parkinson's disease (PD) is debated, with unclear regulation of mitochondrial homeostasis. This study employed a cell model featuring mitochondrial ubiquinol-cytochrome c reductase core protein 1 (UQCRC1) variants associated with familial parkinsonism, demonstrating mitochondrial dysfunction and dynamic imbalance, exploring the therapeutic effects and underlying mechanisms of formoterol. Results revealed that 24-h formoterol treatment enhanced cell proliferation, viability, and neuroprotection against oxidative stress. Mitochondrial function, encompassing DNA copy number, repatriation, and complex III-linked respiration, was comprehensively restored, along with the dynamic rebalance of fusion/fission events. Formoterol reduced extensive hypertubulation, in contrast to mitophagy, by significantly upregulating protein Drp-1, in contrast to fusion protein Mfn2, mitophagy-related protein Parkin. The upstream mechanism involved the restoration of ERK signaling and the inhibition of Akt overactivity, contingent on the activation of β2-adrenergic receptors. Formoterol additionally aided in segregating healthy mitochondria for distribution and transport, therefore normalizing mitochondrial arrangement in mutant cells. This study provides preliminary evidence that formoterol offers neuroprotection, acting as a mitochondrial dynamic balance regulator, making it a promising therapeutic candidate for PD.
Collapse
Affiliation(s)
- Jui-Chih Chang
- Center of Regenerative Medicine and Tissue Repair, Institute of ATP, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Huei-Shin Chang
- Center of Regenerative Medicine and Tissue Repair, Institute of ATP, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yi-Chun Chao
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Ching-Shan Huang
- Center of Regenerative Medicine and Tissue Repair, Institute of ATP, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Zhong-Sheng Wu
- Department of General Research Laboratory of Research, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Hui-Ju Chang
- Center of Regenerative Medicine and Tissue Repair, Institute of ATP, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chin-San Liu
- Department of Neurology, Changhua Christian Hospital, Changhua 500, Taiwan
- Vascular and Genomic Center, Institute of ATP, Changhua Christian Hospital, Changhua 500, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Chieh-Sen Chuang
- Department of Neurology, Changhua Christian Hospital, Changhua 500, Taiwan
| |
Collapse
|
7
|
Arroyo-Urea S, Nazarova AL, Carrión-Antolí Á, Bonifazi A, Battiti FO, Lam JH, Newman AH, Katritch V, García-Nafría J. Structure of the dopamine D3 receptor bound to a bitopic agonist reveals a new specificity site in an expanded allosteric pocket. RESEARCH SQUARE 2023:rs.3.rs-3433207. [PMID: 38196573 PMCID: PMC10775388 DOI: 10.21203/rs.3.rs-3433207/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Although aminergic GPCRs are the target for ~25% of approved drugs, developing subtype selective drugs is a major challenge due to the high sequence conservation at their orthosteric binding site. Bitopic ligands are covalently joined orthosteric and allosteric pharmacophores with the potential to boost receptor selectivity, driven by the binding of the secondary pharmacophore to non-conserved regions of the receptor. Although bitopic ligands have great potential to improve current medications by reducing off-target side effects, the lack of structural information on their binding mode impedes rational design. Here we determine the cryo-EM structure of the hD3R coupled to a GO heterotrimer and bound to the D3R selective bitopic agonist FOB02-04A. Structural, functional and computational analyses provide new insights into its binding mode and point to a new TM2-ECL1-TM1 region, which requires the N-terminal ordering of TM1, as a major determinant of subtype selectivity in aminergic GPCRs. This region is underexploited in drug development, expands the established secondary binding pocket in aminergic GPCRs and could potentially be used to design novel and subtype selective drugs.
Collapse
Affiliation(s)
- Sandra Arroyo-Urea
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018, Zaragoza, Spain
| | - Antonina L. Nazarova
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Ángela Carrión-Antolí
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018, Zaragoza, Spain
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Jordy Homing Lam
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018, Zaragoza, Spain
| |
Collapse
|
8
|
Kaya S, Callan B, Hawthorne S. Non-Invasive, Targeted Nanoparticle-Mediated Drug Delivery across a Novel Human BBB Model. Pharmaceutics 2023; 15:pharmaceutics15051382. [PMID: 37242623 DOI: 10.3390/pharmaceutics15051382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The blood-brain barrier (BBB) is a highly sophisticated system with the ability to regulate compounds transporting through the barrier and reaching the central nervous system (CNS). The BBB protects the CNS from toxins and pathogens but can cause major issues when developing novel therapeutics to treat neurological disorders. PLGA nanoparticles have been developed to successfully encapsulate large hydrophilic compounds for drug delivery. Within this paper, we discuss the encapsulation of a model compound Fitc-dextran, a large molecular weight (70 kDa), hydrophilic compound, with over 60% encapsulation efficiency (EE) within a PLGA nanoparticle (NP). The NP surface was chemically modified with DAS peptide, a ligand that we designed which has an affinity for nicotinic receptors, specifically alpha 7 nicotinic receptors, found on the surface of brain endothelial cells. The attachment of DAS transports the NP across the BBB by receptor-mediated transcytosis (RMT). Assessment of the delivery efficacy of the DAS-conjugated Fitc-dextran-loaded PLGA NP was studied in vitro using our optimal triculture in vitro BBB model, which successfully replicates the in vivo BBB environment, producing high TEER (≥230 ) and high expression of ZO1 protein. Utilising our optimal BBB model, we successfully transported fourteen times the concentration of DAS-Fitc-dextran-PLGA NP compared to non-conjugated Fitc-dextran-PLGA NP. Our novel in vitro model is a viable method of high-throughput screening of potential therapeutic delivery systems to the CNS, such as our receptor-targeted DAS ligand-conjugated NP, whereby only lead therapeutic compounds will progress to in vivo studies.
Collapse
Affiliation(s)
- Shona Kaya
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, N. Ireland BT52 1SA, UK
| | - Bridgeen Callan
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, N. Ireland BT52 1SA, UK
| | - Susan Hawthorne
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, N. Ireland BT52 1SA, UK
| |
Collapse
|
9
|
Haider A, Elghazawy NH, Dawoud A, Gebhard C, Wichmann T, Sippl W, Hoener M, Arenas E, Liang SH. Translational molecular imaging and drug development in Parkinson's disease. Mol Neurodegener 2023; 18:11. [PMID: 36759912 PMCID: PMC9912681 DOI: 10.1186/s13024-023-00600-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that primarily affects elderly people and constitutes a major source of disability worldwide. Notably, the neuropathological hallmarks of PD include nigrostriatal loss and the formation of intracellular inclusion bodies containing misfolded α-synuclein protein aggregates. Cardinal motor symptoms, which include tremor, rigidity and bradykinesia, can effectively be managed with dopaminergic therapy for years following symptom onset. Nonetheless, patients ultimately develop symptoms that no longer fully respond to dopaminergic treatment. Attempts to discover disease-modifying agents have increasingly been supported by translational molecular imaging concepts, targeting the most prominent pathological hallmark of PD, α-synuclein accumulation, as well as other molecular pathways that contribute to the pathophysiology of PD. Indeed, molecular imaging modalities such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) can be leveraged to study parkinsonism not only in animal models but also in living patients. For instance, mitochondrial dysfunction can be assessed with probes that target the mitochondrial complex I (MC-I), while nigrostriatal degeneration is typically evaluated with probes designed to non-invasively quantify dopaminergic nerve loss. In addition to dopaminergic imaging, serotonin transporter and N-methyl-D-aspartate (NMDA) receptor probes are increasingly used as research tools to better understand the complexity of neurotransmitter dysregulation in PD. Non-invasive quantification of neuroinflammatory processes is mainly conducted by targeting the translocator protein 18 kDa (TSPO) on activated microglia using established imaging agents. Despite the overwhelming involvement of the brain and brainstem, the pathophysiology of PD is not restricted to the central nervous system (CNS). In fact, PD also affects various peripheral organs such as the heart and gastrointestinal tract - primarily via autonomic dysfunction. As such, research into peripheral biomarkers has taken advantage of cardiac autonomic denervation in PD, allowing the differential diagnosis between PD and multiple system atrophy with probes that visualize sympathetic nerve terminals in the myocardium. Further, α-synuclein has recently gained attention as a potential peripheral biomarker in PD. This review discusses breakthrough discoveries that have led to the contemporary molecular concepts of PD pathophysiology and how they can be harnessed to develop effective imaging probes and therapeutic agents. Further, we will shed light on potential future trends, thereby focusing on potential novel diagnostic tracers and disease-modifying therapeutic interventions.
Collapse
Affiliation(s)
- Achi Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
- Department of Radiology and Imaging Sciences, Emory University, 101 Woodruff Circle, Atlanta, GA, 30322, USA.
| | - Nehal H Elghazawy
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al-Tagamoa Al-Khames, Cairo, 11835, Egypt
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al-Tagamoa Al-Khames, Cairo, 11835, Egypt
| | - Alyaa Dawoud
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al-Tagamoa Al-Khames, Cairo, 11835, Egypt
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Main Entrance of Al-Tagamoa Al-Khames, Cairo, 11835, Egypt
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Thomas Wichmann
- Department of Neurology/School of Medicine, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120, Halle, Germany
| | - Marius Hoener
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Ernest Arenas
- Karolinska Institutet, MBB, Molecular Neurobiology, Stockholm, Sweden
| | - Steven H Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
- Department of Radiology and Imaging Sciences, Emory University, 101 Woodruff Circle, Atlanta, GA, 30322, USA.
| |
Collapse
|
10
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
11
|
Levodopa-Induced Dyskinesia in Parkinson's Disease: Pathogenesis and Emerging Treatment Strategies. Cells 2022; 11:cells11233736. [PMID: 36496996 PMCID: PMC9736114 DOI: 10.3390/cells11233736] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The most commonly used treatment for Parkinson's disease (PD) is levodopa, prescribed in conjunction with carbidopa. Virtually all patients with PD undergo dopamine replacement therapy using levodopa during the course of the disease's progression. However, despite the fact that levodopa is the "gold standard" in PD treatments and has the ability to significantly alleviate PD symptoms, it comes with side effects in advanced PD. Levodopa replacement therapy remains the current clinical treatment of choice for Parkinson's patients, but approximately 80% of the treated PD patients develop levodopa-induced dyskinesia (LID) in the advanced stages of the disease. A better understanding of the pathological mechanisms of LID and possible means of improvement would significantly improve the outcome of PD patients, reduce the complexity of medication use, and lower adverse effects, thus, improving the quality of life of patients and prolonging their life cycle. This review assesses the recent advancements in understanding the underlying mechanisms of LID and the therapeutic management options available after the emergence of LID in patients. We summarized the pathogenesis and the new treatments for LID-related PD and concluded that targeting pathways other than the dopaminergic pathway to treat LID has become a new possibility, and, currently, amantadine, drugs targeting 5-hydroxytryptamine receptors, and surgery for PD can target the Parkinson's symptoms caused by LID.
Collapse
|
12
|
Correcting a widespread error: Neuroprotectant N-acetyl-L-tryptophan does not bind to the neurokinin-1 receptor. Mol Cell Neurosci 2022; 120:103728. [PMID: 35421568 DOI: 10.1016/j.mcn.2022.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
|
13
|
Suri JS, Paul S, Maindarkar MA, Puvvula A, Saxena S, Saba L, Turk M, Laird JR, Khanna NN, Viskovic K, Singh IM, Kalra M, Krishnan PR, Johri A, Paraskevas KI. Cardiovascular/Stroke Risk Stratification in Parkinson's Disease Patients Using Atherosclerosis Pathway and Artificial Intelligence Paradigm: A Systematic Review. Metabolites 2022; 12:metabo12040312. [PMID: 35448500 PMCID: PMC9033076 DOI: 10.3390/metabo12040312] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a severe, incurable, and costly condition leading to heart failure. The link between PD and cardiovascular disease (CVD) is not available, leading to controversies and poor prognosis. Artificial Intelligence (AI) has already shown promise for CVD/stroke risk stratification. However, due to a lack of sample size, comorbidity, insufficient validation, clinical examination, and a lack of big data configuration, there have been no well-explained bias-free AI investigations to establish the CVD/Stroke risk stratification in the PD framework. The study has two objectives: (i) to establish a solid link between PD and CVD/stroke; and (ii) to use the AI paradigm to examine a well-defined CVD/stroke risk stratification in the PD framework. The PRISMA search strategy selected 223 studies for CVD/stroke risk, of which 54 and 44 studies were related to the link between PD-CVD, and PD-stroke, respectively, 59 studies for joint PD-CVD-Stroke framework, and 66 studies were only for the early PD diagnosis without CVD/stroke link. Sequential biological links were used for establishing the hypothesis. For AI design, PD risk factors as covariates along with CVD/stroke as the gold standard were used for predicting the CVD/stroke risk. The most fundamental cause of CVD/stroke damage due to PD is cardiac autonomic dysfunction due to neurodegeneration that leads to heart failure and its edema, and this validated our hypothesis. Finally, we present the novel AI solutions for CVD/stroke risk prediction in the PD framework. The study also recommends strategies for removing the bias in AI for CVD/stroke risk prediction using the PD framework.
Collapse
Affiliation(s)
- Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (A.P.); (I.M.S.)
- Correspondence: ; Tel.: +1-(916)-749-5628
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.A.M.)
| | - Maheshrao A. Maindarkar
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India; (S.P.); (M.A.M.)
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (A.P.); (I.M.S.)
- Annu’s Hospitals for Skin & Diabetes, Gudur 524101, India
| | - Sanjay Saxena
- Department of CSE, International Institute of Information Technology, Bhuneshwar 751003, India;
| | - Luca Saba
- Department of Radiology, University of Cagliari, 09121 Cagliari, Italy;
| | - Monika Turk
- Deparment of Neurology, University Medical Centre Maribor, 1262 Maribor, Slovenia;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India;
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (A.P.); (I.M.S.)
| | - Mannudeep Kalra
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA;
| | | | - Amer Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Kosmas I. Paraskevas
- Department of Vascular Surgery, Central Clinic of Athens, 106 80 Athens, Greece;
| |
Collapse
|
14
|
van Vuuren NJ, van Rensburg HDJ, Terre'Blanche G, Legoabe LJ. New fused pyrroles with rA1/A2A antagonistic activity as potential therapeutics for neurodegenerative disorders. Mol Divers 2021; 26:2211-2220. [PMID: 34741275 DOI: 10.1007/s11030-021-10327-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
In a pilot study, eleven pyrrolopyridine and pyrrolopyrimidine derivatives (specifically, 7-azaindole and 7-deazapurine derivatives) were synthesised by Suzuki cross-coupling reactions and evaluated via radioligand binding assays as potential adenosine receptor (AR) antagonists in order to further investigate the structure-activity relationships of these compounds. 6-Chloro-4-phenyl-1H-pyrrolo[2,3-b]pyridine, with a 7-azaindole scaffold, was identified as a selective A1 AR antagonist with a rA1Ki value of 0.16 µM, and interestingly, the addition of a N-atom to the aforementioned fused heterocyclic ring system, creating corresponding 7-deazapurines, led to a dual A1/A2A AR ligand (2-chloro-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine: rA1Ki: 0.19 ± 0.02 µM; rA2AKi: 0.43 ± 0.01 µM). Introducing an additional N-atom into the heterocyclic ring system was tolerable for rA1 AR affinity and also led to rA2A AR affinity. This pilot study concluded that new 7-azaindole and 7-deazapurine derivatives represent interesting scaffolds for design of A1 and/or A2A AR antagonists.
Collapse
Affiliation(s)
- Nadia Janse van Vuuren
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Helena D Janse van Rensburg
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Gisella Terre'Blanche
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.,Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
15
|
Di Stefano A, Marinelli L. Advances in Parkinson's Disease Drugs. Biomolecules 2021; 11:biom11111640. [PMID: 34827638 PMCID: PMC8615848 DOI: 10.3390/biom11111640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
|
16
|
Bonifazi A, Newman AH, Keck TM, Gervasoni S, Vistoli G, Del Bello F, Giorgioni G, Pavletić P, Quaglia W, Piergentili A. Scaffold Hybridization Strategy Leads to the Discovery of Dopamine D 3 Receptor-Selective or Multitarget Bitopic Ligands Potentially Useful for Central Nervous System Disorders. ACS Chem Neurosci 2021; 12:3638-3649. [PMID: 34529404 PMCID: PMC8498988 DOI: 10.1021/acschemneuro.1c00368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
![]()
In the search for
novel bitopic compounds targeting the dopamine
D3 receptor (D3R), the N-(2,3-dichlorophenyl)piperazine
nucleus (primary pharmacophore) has been linked to the 6,6- or 5,5-diphenyl-1,4-dioxane-2-carboxamide
or the 1,4-benzodioxane-2-carboxamide scaffold (secondary pharmacophore)
by an unsubstituted or 3-F-/3-OH-substituted butyl chain. This scaffold
hybridization strategy led to the discovery of potent D3R-selective or multitarget ligands potentially useful for central
nervous system disorders. In particular, the 6,6-diphenyl-1,4-dioxane
derivative 3 showed a D3R-preferential profile,
while an interesting multitarget behavior has been highlighted for
the 5,5-diphenyl-1,4-dioxane and 1,4-benzodioxane derivatives 6 and 9, respectively, which displayed potent
D2R antagonism, 5-HT1AR and D4R agonism,
as well as potent D3R partial agonism. They also behaved
as low-potency 5-HT2AR antagonists and 5-HT2CR partial agonists. Such a profile might be a promising starting
point for the discovery of novel antipsychotic agents.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse—Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, Camerino 62032, Italy
| | - Amy H. Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse—Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Thomas M. Keck
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse—Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
- Department of Chemistry & Biochemistry, Department of Molecular & Cellular Biosciences, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Silvia Gervasoni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, Milano 20133, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, Milano 20133, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, Camerino 62032, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, Camerino 62032, Italy
| | - Pegi Pavletić
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, Camerino 62032, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, Camerino 62032, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, Camerino 62032, Italy
| |
Collapse
|
17
|
Koszła O, Stępnicki P, Zięba A, Grudzińska A, Matosiuk D, Kaczor AA. Current Approaches and Tools Used in Drug Development against Parkinson's Disease. Biomolecules 2021; 11:897. [PMID: 34208760 PMCID: PMC8235487 DOI: 10.3390/biom11060897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder characterized by the death of nerve cells in the substantia nigra of the brain. The treatment options for this disease are very limited as currently the treatment is mainly symptomatic, and the available drugs are not able to completely stop the progression of the disease but only to slow it down. There is still a need to search for new compounds with the most optimal pharmacological profile that would stop the rapidly progressing disease. An increasing understanding of Parkinson's pathogenesis and the discovery of new molecular targets pave the way to develop new therapeutic agents. The use and selection of appropriate cell and animal models that better reflect pathogenic changes in the brain is a key aspect of the research. In addition, computer-assisted drug design methods are a promising approach to developing effective compounds with potential therapeutic effects. In light of the above, in this review, we present current approaches for developing new drugs for Parkinson's disease.
Collapse
Affiliation(s)
- Oliwia Koszła
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Agata Zięba
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Angelika Grudzińska
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
18
|
Li B, Nasser M, Masood M, Adlat S, Huang Y, Yang B, Luo C, Jiang N. Efficiency of Traditional Chinese medicine targeting the Nrf2/HO-1 signaling pathway. Biomed Pharmacother 2020; 126:110074. [DOI: 10.1016/j.biopha.2020.110074] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 02/09/2023] Open
|
19
|
Chen X, Wang Y, Wu H, Cheng C, Le W. Research advances on L-DOPA-induced dyskinesia: from animal models to human disease. Neurol Sci 2020; 41:2055-2065. [DOI: 10.1007/s10072-020-04333-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/07/2020] [Indexed: 02/06/2023]
|
20
|
Barroso SDS, Lopes LES, Santos KS, Gomes MZ. Technological prospection: patents mapping involving compounds for the treatment of L-DOPA-induced dyskinesias. Expert Opin Ther Pat 2019; 29:979-985. [DOI: 10.1080/13543776.2019.1690453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sheilla Da Silva Barroso
- Northeast Biotechnology Network Post-Graduating, Tiradentes University, Aracaju, Brazil
- Laboratory of Morphology and Experimental Pathology, Research and Technology Institute, Aracaju, Brazil
| | - Lorenna Emília Sena Lopes
- Laboratory of Morphology and Experimental Pathology, Research and Technology Institute, Aracaju, Brazil
- Health and Environment Post-Graduating Program, Tiradentes University, Aracaju, Brazil
| | - Klebson Silva Santos
- Laboratory of Morphology and Experimental Pathology, Research and Technology Institute, Aracaju, Brazil
| | - Margarete Zanardo Gomes
- Northeast Biotechnology Network Post-Graduating, Tiradentes University, Aracaju, Brazil
- Laboratory of Morphology and Experimental Pathology, Research and Technology Institute, Aracaju, Brazil
- Health and Environment Post-Graduating Program, Tiradentes University, Aracaju, Brazil
| |
Collapse
|
21
|
Markowska D, Malicka D, Nuszkiewicz J, Szewczyk-Golec K. The role of selected antioxidants in the development and treatment of Parkinson’s disease. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.5252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The widespread aging of societies results in the intensification of the development of neurodegenerative diseases associated with advanced age, including Parkinson’s disease. Unfortunately, modern medicine is not able to unequivocally determine the etiopathogenesis of the disease, which is why no causative treatment can be given. According to the current state of knowledge, in the course of Parkinson’s disease the substantia nigra pars compacta in the midbrain degenerates, leading to a decrease in dopamine levels in the patient’s brain. This results in neurotransmission disturbances and the development of undesirable effects. Neurodegenerative changes are supposedly caused by the combination of various factors, including genetic factors, chronic inflammation, the interaction of toxins, disturbances in protein metabolism, and oxidative stress. The therapeutic possibilities
associated with the administration of antioxidants, which could alleviate increased oxidative stress
and contribute to the better quality of life of the patient, are considered. Taking into account the
studies on numerous antioxidants, such as coenzyme Q10, B vitamins, vitamin D, vitamin E and
resveratrol, it cannot be unequivocally stated that this is an effective treatment, because experiments
carried out on both humans and animals gave conflicting results. It is reasonable to say that
antioxidant deficiencies should be avoided and the physiological levels should be sought, as this
may be translated into significant health benefits.
Collapse
Affiliation(s)
- Dominika Markowska
- Studenckie Koło Naukowe Biologii Medycznej Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy UMK w Toruniu, Polska
| | - Daria Malicka
- Studenckie Koło Naukowe Biologii Medycznej Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy UMK w Toruniu, Polska
| | - Jarosław Nuszkiewicz
- Katedra Biologii i Biochemii Medycznej Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy UMK w Toruniu, Polska
| | - Karolina Szewczyk-Golec
- Katedra Biologii i Biochemii Medycznej Collegium Medicum im. Ludwika Rydygiera w Bydgoszczy UMK w Toruniu, Polska
| |
Collapse
|