1
|
Loshkareva AS, Popova MM, Shilova LA, Fedorova NV, Timofeeva TA, Galimzyanov TR, Kuzmin PI, Knyazev DG, Batishchev OV. Influenza A Virus M1 Protein Non-Specifically Deforms Charged Lipid Membranes and Specifically Interacts with the Raft Boundary. MEMBRANES 2023; 13:76. [PMID: 36676883 PMCID: PMC9864314 DOI: 10.3390/membranes13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Topological rearrangements of biological membranes, such as fusion and fission, often require a sophisticated interplay between different proteins and cellular membranes. However, in the case of fusion proteins of enveloped viruses, even one molecule can execute membrane restructurings. Growing evidence indicates that matrix proteins of enveloped viruses can solely trigger the membrane bending required for another crucial step in virogenesis, the budding of progeny virions. For the case of the influenza A virus matrix protein M1, different studies report both in favor and against M1 being able to produce virus-like particles without other viral proteins. Here, we investigated the physicochemical mechanisms of M1 membrane activity on giant unilamellar vesicles of different lipid compositions using fluorescent confocal microscopy. We confirmed that M1 predominantly interacts electrostatically with the membrane, and its ability to deform the lipid bilayer is non-specific and typical for membrane-binding proteins and polypeptides. However, in the case of phase-separating membranes, M1 demonstrates a unique ability to induce macro-phase separation, probably due to the high affinity of M1's amphipathic helices to the raft boundary. Thus, we suggest that M1 is tailored to deform charged membranes with a specific activity in the case of phase-separating membranes.
Collapse
Affiliation(s)
- Anna S. Loshkareva
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Marina M. Popova
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Liudmila A. Shilova
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Natalia V. Fedorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tatiana A. Timofeeva
- Laboratory of Physiology of Viruses, D. I. Ivanovsky Institute of Virology, FSBI N. F. Gamaleya NRCEM, Ministry of Health of Russian Federation, 123098 Moscow, Russia
| | - Timur R. Galimzyanov
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Petr I. Kuzmin
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Denis G. Knyazev
- Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Oleg V. Batishchev
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
2
|
Molotkovsky RJ, Kuzmin PI. Fusion of Peroxisome and Lipid Droplet Membranes: Expansion of a π-Shaped Structure. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022. [DOI: 10.1134/s1990747822050105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Saitov A, Kalutsky MA, Galimzyanov TR, Glasnov T, Horner A, Akimov SA, Pohl P. Determinants of Lipid Domain Size. Int J Mol Sci 2022; 23:ijms23073502. [PMID: 35408861 PMCID: PMC8998648 DOI: 10.3390/ijms23073502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
Lipid domains less than 200 nm in size may form a scaffold, enabling the concerted function of plasma membrane proteins. The size-regulating mechanism is under debate. We tested the hypotheses that large values of spontaneous monolayer curvature are incompatible with micrometer-sized domains. Here, we used the transition of photoswitchable lipids from their cylindrical conformation to a conical conformation to increase the negative curvature of a bilayer-forming lipid mixture. In contrast to the hypothesis, pre-existing micrometer-sized domains did not dissipate in our planar bilayers, as indicated by fluorescence images and domain mobility measurements. Elasticity theory supports the observation by predicting the zero free energy gain for splitting large domains into smaller ones. It also indicates an alternative size-determining mechanism: The cone-shaped photolipids reduce the line tension associated with lipid deformations at the phase boundary and thus slow down the kinetics of domain fusion. The competing influence of two approaching domains on the deformation of the intervening lipids is responsible for the kinetic fusion trap. Our experiments indicate that the resulting local energy barrier may restrict the domain size in a dynamic system.
Collapse
Affiliation(s)
- Ali Saitov
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria; (A.S.); (A.H.)
| | - Maksim A. Kalutsky
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/5 Leninskiy Prospekt, 119071 Moscow, Russia; (M.A.K.); (T.R.G.); (S.A.A.)
- Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology “MISiS”, 4 Leninskiy Prospekt, 119049 Moscow, Russia
| | - Timur R. Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/5 Leninskiy Prospekt, 119071 Moscow, Russia; (M.A.K.); (T.R.G.); (S.A.A.)
| | - Toma Glasnov
- Institute of Chemistry, University of Graz, 8010 Graz, Austria;
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria; (A.S.); (A.H.)
| | - Sergey A. Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/5 Leninskiy Prospekt, 119071 Moscow, Russia; (M.A.K.); (T.R.G.); (S.A.A.)
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria; (A.S.); (A.H.)
- Correspondence:
| |
Collapse
|
4
|
Sofińska K, Lupa D, Chachaj-Brekiesz A, Czaja M, Kobierski J, Seweryn S, Skirlińska-Nosek K, Szymonski M, Wilkosz N, Wnętrzak A, Lipiec E. Revealing local molecular distribution, orientation, phase separation, and formation of domains in artificial lipid layers: Towards comprehensive characterization of biological membranes. Adv Colloid Interface Sci 2022; 301:102614. [PMID: 35190313 DOI: 10.1016/j.cis.2022.102614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
Lipids, together with molecules such as DNA and proteins, are one of the most relevant systems responsible for the existence of life. Selected lipids are able to assembly into various organized structures, such as lipid membranes. The unique properties of lipid membranes determine their complex functions, not only to separate biological environments, but also to participate in regulatory functions, absorption of nutrients, cell-cell communication, endocytosis, cell signaling, and many others. Despite numerous scientific efforts, still little is known about the reason underlying the variability within lipid membranes, and its biochemical significance. In this review, we discuss the structural complexity of lipid membranes, as well as the importance to simplify studied systems in order to understand phenomena occurring in natural, complex membranes. Such systems require a model interface to be analyzed. Therefore, here we focused on analytical studies of artificial systems at various interfaces. The molecular structure of lipid membranes, specifically the nanometric thickens of molecular bilayer, limits in a major extent the choice of highly sensitive methods suitable to study such structures. Therefore, we focused on methods that combine high sensitivity, and/or chemical selectivity, and/or nanometric spatial resolution, such as atomic force microscopy, nanospectroscopy (tip-enhanced Raman spectroscopy, infrared nanospectroscopy), phase modulation infrared reflection-absorption spectroscopy, sum-frequency generation spectroscopy. We summarized experimental and theoretical approaches providing information about molecular structure and composition, lipid spatial distribution (phase separation), organization (domain shape, molecular orientation) of lipid membranes, and real-time visualization of the influence of various molecules (proteins, drugs) on their integrity. An integral part of this review discusses the latest achievements in the field of lipid layer-based biosensors.
Collapse
|
5
|
Kondrashov OV, Kuzmin PI, Akimov SA. Hydrophobic Mismatch Controls the Mode of Membrane-Mediated Interactions of Transmembrane Peptides. MEMBRANES 2022; 12:89. [PMID: 35054615 PMCID: PMC8781805 DOI: 10.3390/membranes12010089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 01/01/2023]
Abstract
Various cellular processes require the concerted cooperative action of proteins. The possibility for such synchronization implies the occurrence of specific long-range interactions between the involved protein participants. Bilayer lipid membranes can mediate protein-protein interactions via relatively long-range elastic deformations induced by the incorporated proteins. We considered the interactions between transmembrane peptides mediated by elastic deformations using the framework of the theory of elasticity of lipid membranes. An effective peptide shape was assumed to be cylindrical, hourglass-like, or barrel-like. The interaction potentials were obtained for membranes of different thicknesses and elastic rigidities. Cylindrically shaped peptides manifest almost neutral average interactions-they attract each other at short distances and repel at large ones, independently of membrane thickness or rigidity. The hourglass-like peptides repel each other in thin bilayers and strongly attract each other in thicker bilayers. On the contrary, the barrel-like peptides repel each other in thick bilayers and attract each other in thinner membranes. These results potentially provide possible mechanisms of control for the mode of protein-protein interactions in membrane domains with different bilayer thicknesses.
Collapse
Affiliation(s)
- Oleg V. Kondrashov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| | | | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| |
Collapse
|
6
|
Kondrashov OV, Pinigin KV, Akimov SA. Characteristic lengths of transmembrane peptides controlling their tilt and lateral distribution between membrane domains. Phys Rev E 2021; 104:044411. [PMID: 34781459 DOI: 10.1103/physreve.104.044411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 10/04/2021] [Indexed: 11/07/2022]
Abstract
Lipids and proteins of plasma membranes of eukaryotic cells are supposed to form protein-lipid domains, characterized by a different molecular order, bilayer thickness, and elastic parameters. Several mechanisms of preferable distribution of transmembrane proteins to the ordered or disordered membrane domains have been revealed. The mismatch between the length of the protein transmembrane domain and hydrophobic thickness of the lipid bilayer is considered to be an important driving force of protein lateral sorting. Utilizing the continuum theory of elasticity, we analyzed optimal configurations and preferable membrane domains for single-pass transmembrane peptides of various hydrophobic lengths and effective molecular shapes. We obtained that short transmembrane peptides stand perpendicularly to the membrane plane. The exceedance of a certain characteristic length leads to the tilt of the peptide. This length depends on the bilayer thickness. Thus, in the membrane with coexisting ordered (thicker) and disordered (thinner) phases tilting of the peptide in each phase is governed by its individual characteristic length. The lateral distribution of the peptides between ordered and disordered membrane domains is shown to be described by two additional characteristic lengths. The exceedance of the smaller one drives the peptide towards a more ordered and thicker membrane, while the exceedance of the larger characteristic length switches the preferable membrane domain from ordered and thicker to disordered and thinner. Thus, membrane proteins with long enough transmembrane domains are predicted to accumulate in the thinner disordered membrane as compared to the thicker ordered bilayer. For hourglass-like and barrel-like shaped transmembrane peptides the specific regime of sorting was obtained: the peptides distributed almost equally between the phases in a wide range of peptide lengths. This finding allowed explaining the experimental data on lateral distribution of transmembrane peptide tLAT.
Collapse
Affiliation(s)
- Oleg V Kondrashov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow 119071, Russia
| | - Konstantin V Pinigin
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow 119071, Russia
| | - Sergey A Akimov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow 119071, Russia
| |
Collapse
|
7
|
Akimov SA, Molotkovsky RJ, Kuzmin PI, Galimzyanov TR, Batishchev OV. Continuum Models of Membrane Fusion: Evolution of the Theory. Int J Mol Sci 2020; 21:E3875. [PMID: 32485905 PMCID: PMC7312925 DOI: 10.3390/ijms21113875] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Starting from fertilization, through tissue growth, hormone secretion, synaptic transmission, and sometimes morbid events of carcinogenesis and viral infections, membrane fusion regulates the whole life of high organisms. Despite that, a lot of fusion processes still lack well-established models and even a list of main actors. A merger of membranes requires their topological rearrangements controlled by elastic properties of a lipid bilayer. That is why continuum models based on theories of membrane elasticity are actively applied for the construction of physical models of membrane fusion. Started from the view on the membrane as a structureless film with postulated geometry of fusion intermediates, they developed along with experimental and computational techniques to a powerful tool for prediction of the whole process with molecular accuracy. In the present review, focusing on fusion processes occurring in eukaryotic cells, we scrutinize the history of these models, their evolution and complication, as well as open questions and remaining theoretical problems. We show that modern approaches in this field allow continuum models of membrane fusion to stand shoulder to shoulder with molecular dynamics simulations, and provide the deepest understanding of this process in multiple biological systems.
Collapse
Affiliation(s)
- Sergey A. Akimov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia; (R.J.M.); (P.I.K.); (T.R.G.); (O.V.B.)
| | | | | | | | | |
Collapse
|
8
|
Pinigin KV, Kondrashov OV, Jiménez-Munguía I, Alexandrova VV, Batishchev OV, Galimzyanov TR, Akimov SA. Elastic deformations mediate interaction of the raft boundary with membrane inclusions leading to their effective lateral sorting. Sci Rep 2020; 10:4087. [PMID: 32139760 PMCID: PMC7058020 DOI: 10.1038/s41598-020-61110-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Liquid-ordered lipid domains represent a lateral inhomogeneity in cellular membranes. These domains have elastic and physicochemical properties different from those of the surrounding membrane. In particular, their thickness exceeds that of the disordered membrane. Thus, elastic deformations arise at the domain boundary in order to compensate for the thickness mismatch. In equilibrium, the deformations lead to an incomplete register of monolayer ordered domains: the elastic energy is minimal if domains in opposing monolayers lie on the top of each other, and their boundaries are laterally shifted by about 3 nm. This configuration introduces a region, composed of one ordered and one disordered monolayers, with an intermediate bilayer thickness. Besides, a jump in a local monolayer curvature takes place in this intermediate region, concentrating here most of the elastic stress. This region can participate in a lateral sorting of membrane inclusions by offering them an optimal bilayer thickness and local curvature conditions. In the present study, we consider the sorting of deformable lipid inclusions, undeformable peripheral and deeply incorporated peptide inclusions, and undeformable transmembrane inclusions of different molecular geometry. With rare exceptions, all types of inclusions have an affinity to the ordered domain boundary as compared to the bulk phases. The optimal lateral distribution of inclusions allows relaxing the elastic stress at the boundary of domains.
Collapse
Affiliation(s)
- Konstantin V Pinigin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Oleg V Kondrashov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Irene Jiménez-Munguía
- National University of Science and Technology "MISiS", 4 Leninskiy prospect, Moscow, 119049, Russia
| | | | - Oleg V Batishchev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Timur R Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Sergey A Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia.
| |
Collapse
|