1
|
Li BY, Li HY, Zhou DD, Huang SY, Luo M, Gan RY, Mao QQ, Saimaiti A, Shang A, Li HB. Effects of Different Green Tea Extracts on Chronic Alcohol Induced-Fatty Liver Disease by Ameliorating Oxidative Stress and Inflammation in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5188205. [PMID: 35003517 PMCID: PMC8731271 DOI: 10.1155/2021/5188205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/06/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022]
Abstract
Alcoholic fatty liver disease (AFLD) is a common chronic liver disease and has become a critical global public health problem. Green tea is a popular drink worldwide and contains several bioactive compounds. Different green teas could contain diverse compounds and possess distinct bioactivities. In the present study, the effects of 10 green teas on chronic alcohol induced-fatty liver disease in mice were explored and compared. The results showed that several green teas significantly reduced triacylglycerol levels in serum and liver as well as the aminotransferase activities in mice at a dose of 200 mg/kg, suggesting that they possess hepatoprotective effects. Moreover, several green teas remarkably decreased the expression of cytochrome P450 2E1, the levels of malondialdehyde and 4-hydroxynonenoic acid, and the contents of proinflammatory cytokines, indicating that they could alleviate oxidation damage and inflammation induced by chronic alcohol exposure. In addition, Seven Star Matcha Tea and Selenium-Enriched Matcha Tea could increase glutathione level. Furthermore, the main phytochemical components in green teas were determined and quantified by high-performance liquid chromatography, and the correlation analysis showed that gallic acid, gallocatechin, catechin, chlorogenic acid, and epigallocatechin gallate might at least partially contribute to protective effects on AFLD. In conclusion, Selenium-Enriched Chaoqing Green Tea, Xihu Longjing Tea, Taiping Houkui Tea, and Selenium-Enriched Matcha Tea showed the strongest preventive effects on AFLD. This research also provides the public with new insights about the effects of different green teas on AFLD.
Collapse
Affiliation(s)
- Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
2
|
Liu Z, de Bruijn WJC, Bruins ME, Vincken JP. Reciprocal Interactions between Epigallocatechin-3-gallate (EGCG) and Human Gut Microbiota In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9804-9815. [PMID: 32808768 PMCID: PMC7496747 DOI: 10.1021/acs.jafc.0c03587] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Interaction of tea phenolics with gut microbiota may play an integral role in the health benefits of these bioactive compounds, yet this interaction is not fully understood. Here, the metabolic fate of epigallocatechin-3-gallate (EGCG) and its impact on gut microbiota were integrally investigated via in vitro fermentation. As revealed by ultrahigh performance liquid chromatography hybrid quadrupole Orbitrap mass spectrometry (UHPLC-Q-Orbitrap-MS), EGCG was promptly degraded into a series of metabolites, including 4-phenylbutyric acid, 3-(3',4'-dihydroxyphenyl)propionic acid, and 3-(4'-hydroxyphenyl)propionic acid, through consecutive ester hydrolysis, C-ring opening, A-ring fission, dehydroxylation, and aliphatic chain shortening. Microbiome profiling indicated that, compared to the blank, EGCG treatment resulted in stimulation of the beneficial bacteria Bacteroides, Christensenellaceae, and Bifidobacterium. Additionally, the pathogenic bacteria Fusobacterium varium, Bilophila, and Enterobacteriaceae were inhibited. Furthermore, changes in concentrations of metabolites, including 4-phenylbutyric acid and phenylacetic acid, were strongly correlated with changes in the abundance of specific gut microbiota. These reciprocal interactions between EGCG and gut microbiota may collectively contribute to the health benefits of EGCG.
Collapse
Affiliation(s)
- Zhibin Liu
- Laboratory of Food
Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Institute
of Food Science & Technology, Fuzhou
University, Fuzhou 350108, P. R. China
| | - Wouter J. C. de Bruijn
- Laboratory of Food
Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Marieke E. Bruins
- Food &
Biobased Research, Wageningen University
& Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food
Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- . Tel: +31-317482234
| |
Collapse
|