1
|
Shiwal A, Nibrad D, Tadas M, Katariya R, Kale M, Wankhede N, Kotagale N, Umekar M, Taksande B. Polyamines signalling pathway: A key player in unveiling the molecular mechanisms underlying Huntington's disease. Neuroscience 2025; 570:213-224. [PMID: 39986431 DOI: 10.1016/j.neuroscience.2025.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Polyaminesare essential organic cations found in all eukaryotic cells and play an important role in many cellular processes including growth, differentiation, andneuroprotection. This review explores the complex relationship between polyamine signaling and Huntington's disease (HD), an autosomal-dominant neurodegenerative disorder characterized by the progressive degeneration of medium-spiny neurons in the striatum and cortex due to mutations in the huntingtin gene. We provide a comprehensive overview of how polyamines, specificallyputrescine,spermidine, andspermine, regulate important cellular functions such as gene expression, protein synthesis, membrane stability, and ion channel regulation with implications for HD. Dysfunction in polyamine metabolism in HD, reveals how changes in these molecules promote oxidative stress, mitochondrial dysfunction, andexcitotoxicity. Importantly, polyamines interact with mutanthuntingtin protein (mHTT) to affect its aggregationand neurotoxicity. This effect may contribute to the pathophysiological mechanisms underlying HD, suggesting that polyamines may act as potential biomarkers of disease progression. Additionally, we discuss the therapeutic implications of targeting the polyamine signaling pathway to alleviate HD symptoms. By enhancing autophagy and modulating neurotransmitter systems, polyamines mayprovideneuroprotectionagainstmHTT-inducedtoxicity. Moreover, the present review provides new insight into the role of polyamines in the pathogenesis of HDand suggests that regulation of polyamine metabolism may represent a promising therapy to slow the disease progression. Besides this, the review highlights the need for further investigation of the diverse roles of polyamines in neurodegenerative diseases, including HD, paving the way for novel interventions to improve cellular homeostasis andpatient outcomes.
Collapse
Affiliation(s)
- Amit Shiwal
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Dhanshree Nibrad
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Manasi Tadas
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Nitu Wankhede
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, MS 444 604, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India.
| |
Collapse
|
2
|
Kim MJ, Chang JH. Structure simulation-based comparison of active site variations in fungal ornithine decarboxylases. Commun Integr Biol 2025; 18:2458872. [PMID: 39906711 PMCID: PMC11792860 DOI: 10.1080/19420889.2025.2458872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
Polyamines play crucial roles in various biological processes, including cell proliferation and differentiation, immune response modulation, and signal transduction. Ornithine decarboxylase (ODC) initiates polyamine biosynthesis by catalyzing the conversion of ornithine to putrescine in a pyridoxal phosphate (PLP)-dependent manner. While the structures of mammalian and protozoan ODCs have been elucidated, fungal ODCs remain uncharacterized. In this study, AlphaFold2 was employed to simulate the structures of ODCs from four fungi: Kluyveromyces lactis, Candida albicans, Debaryomyces hansenii, and Schizosaccharomyces pombe. The results indicated that, although these ODCs share α/β-barrel and β-sheet domains, their active site conformations exhibit subtle differences. Additionally, substrate selectivity among ODCs and related decarboxylases varied depending on the distance between the Cα of aspartate or glutamate residues within the specificity helix and the C4α of PLP. Notably, the bacterial Campylobacter jejuni decarboxylase (CjCANSDC), which binds the largest substrate, exhibits the longest distance, whereas fungal ODC, which binds the smallest substrate, displays the shortest distance. Furthermore, significant differences in the composition of amino acid residues within the active sites were also observed. This study provides insights into the structural diversity and catalytic activity of ODCs across a broad range of organisms, advancing the understanding of structure-dependent evolutionary processes.
Collapse
Affiliation(s)
- Min Jeong Kim
- Department of Biology Education, Kyungpook National University, Daegu, South Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, South Korea
- Department of Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, South Korea
- Science Education Research Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
3
|
Hsieh J, Leong P, Yang Y, Liu Y, Liu G, Hung H. Protein degradation of antizyme depends on the N-terminal degrons. Protein Sci 2024; 33:e5199. [PMID: 39473024 PMCID: PMC11521938 DOI: 10.1002/pro.5199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024]
Abstract
Antizyme (AZ) is a regulatory protein that plays a crucial role in modulating the activity of ornithine decarboxylase (ODC), which is the initial and rate-limiting enzyme in the complex pathway of polyamine biosynthesis. AZ facilitates the swift degradation of ODC, thereby modulating the levels of cellular polyamines. This study unveils a new ubiquitin-independent mechanism for AZ degradation, emphasizing the essential role of N-terminal degrons. Contrary to traditional ubiquitin-dependent degradation, our findings reveal that AZ degradation is significantly influenced by its N-terminal region. By conducting a series of experiments, including in vitro degradation assays, cycloheximide chase experiments, differential scanning calorimetry, and measurement of cellular concentrations of polyamines, we demonstrate that N-terminal truncation significantly enhances AZ's stability and facilitates the reduction of polyamine levels by accelerating ODC degradation. The removal of the N-terminal portion of AZ results in a reduced degradation rate and enhanced thermal stability of the protein, leading to a more efficient inhibition of polyamine synthesis. These findings are corroborated by the analysis of AZ isoforms, AZ1, AZ2, and AZ3, which display differential degradation patterns based on the specific N-terminal segments. This substantiates a degradation mechanism driven by an intrinsically disordered N-terminal region acting as a degron, independent of lysine ubiquitination. These results underscore the significant regulatory function of the N-terminal domain in the activity of AZ and the maintenance of polyamine homeostasis.
Collapse
Affiliation(s)
- Ju‐Yi Hsieh
- Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan, ROC
- Institute of Medicine, School of MedicineChung Shan Medical UniversityTaichungTaiwan, ROC
| | - Pui‐Ying Leong
- Institute of Medicine, School of MedicineChung Shan Medical UniversityTaichungTaiwan, ROC
- Division of Allergy, Immunology and Rheumatology, Department of MedicineChung Shan Medical University HospitalTaichungTaiwan, ROC
| | - Yi‐Fang Yang
- Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan, ROC
- Doctoral Program in Tissue Engineering and Regenerative MedicineNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Yi‐Liang Liu
- Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan, ROC
| | - Guang‐Yaw Liu
- Institute of Medicine, School of MedicineChung Shan Medical UniversityTaichungTaiwan, ROC
- Division of Allergy, Immunology and Rheumatology, Department of MedicineChung Shan Medical University HospitalTaichungTaiwan, ROC
| | - Hui‐Chih Hung
- Department of Life SciencesNational Chung Hsing UniversityTaichungTaiwan, ROC
- iEGG and Animal Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
- Advanced Plant and Food Crop Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan, ROC
| |
Collapse
|
4
|
Khomutov MA, Salikhov AI, Mitkevich VA, Tunitskaya VL, Smirnova OA, Korolev SP, Chizhov AO, Gottikh MB, Kochetkov SN, Khomutov AR. C-Methylated Spermidine Derivatives: Convenient Syntheses and Antizyme-Related Effects. Biomolecules 2023; 13:916. [PMID: 37371496 DOI: 10.3390/biom13060916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
The biogenic polyamines, spermidine (Spd) and spermine (Spm), are present at millimolar concentrations in all eukaryotic cells, where they participate in the regulation of vitally important cellular functions. Polyamine analogs and derivatives are a traditional and important instrument for the investigation of the cellular functions of polyamines, enzymes of their metabolism, and the regulation of the biosynthesis of antizyme-a key downregulator of polyamine homeostasis. Here, we describe convenient gram-scale syntheses of a set of C-methylated analogs of Spd. The biochemical properties of these compounds and the possibility for the regulation of their activity by moving a methyl group along the polyamine backbone and by changing the stereochemistry of the chiral center(s) are discussed.
Collapse
Affiliation(s)
- Maxim A Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Arthur I Salikhov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Vera L Tunitskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Sergey P Korolev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Alexander O Chizhov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninskii Prosp. 47, Moscow 119991, Russia
| | - Marina B Gottikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| | - Alex R Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, Moscow 119991, Russia
| |
Collapse
|
5
|
Biran A, Myers N, Steinberger S, Adler J, Riutin M, Broennimann K, Reuven N, Shaul Y. The C-Terminus of the PSMA3 Proteasome Subunit Preferentially Traps Intrinsically Disordered Proteins for Degradation. Cells 2022; 11:cells11203231. [PMID: 36291102 PMCID: PMC9600399 DOI: 10.3390/cells11203231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 12/29/2022] Open
Abstract
The degradation of intrinsically disordered proteins (IDPs) by a non-26S proteasome process does not require proteasomal targeting by polyubiquitin. However, whether and how IDPs are recognized by the non-26S proteasome, including the 20S complex, remains unknown. Analyses of protein interactome datasets revealed that the 20S proteasome subunit, PSMA3, preferentially interacts with many IDPs. In vivo and cell-free experiments revealed that the C-terminus of PSMA3, a 69-amino-acids-long fragment, is an IDP trapper. A recombinant trapper is sufficient to interact with many IDPs, and blocks IDP degradation in vitro by the 20S proteasome, possibly by competing with the native trapper. In addition, over a third of the PSMA3 trapper-binding proteins have previously been identified as 20S proteasome substrates and, based on published datasets, many of the trapper-binding proteins are associated with the intracellular proteasomes. The PSMA3-trapped IDPs that are proteasome substrates have the unique features previously recognized as characteristic 20S proteasome substrates in vitro. We propose a model whereby the PSMA3 C-terminal region traps a subset of IDPs to facilitate their proteasomal degradation.
Collapse
|