1
|
Lin SW, Tsai JC, Shyong YJ. Drug delivery of extracellular vesicles: Preparation, delivery strategies and applications. Int J Pharm 2023; 642:123185. [PMID: 37391106 DOI: 10.1016/j.ijpharm.2023.123185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Extracellular vesicles (EV) are cell-originated vesicles exhibited with characteristics similar to the parent cells. Several studies have suggested the therapeutic potential of EV since they played as an intercellular communicator and modulate disease microenvironment, and thus EV has been widely studied in cancer management and tissue regeneration. However, merely application of EV revealed limited therapeutic outcome in different disease scenario and co-administration of drugs may be necessary to exert proper therapeutic effect. The method of drug loading into EV and efficient delivery of the formulation is therefore important. In this review, the advantages of using EV as drug delivery system compared to traditional synthetic nanoparticles will be emphasized, followed by the method of preparing EV and drug loading. The pharmacokinetic characteristics of EV was discussed, together with the review of reported delivery strategies and related application of EV in different disease management.
Collapse
Affiliation(s)
- Shang-Wen Lin
- School of Pharmacy, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - Jui-Chen Tsai
- School of Pharmacy, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - Yan-Jye Shyong
- School of Pharmacy, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan.
| |
Collapse
|
2
|
Cumba Garcia LM, Bouchal SM, Bauman MMJ, Parney IF. Advancements and Technical Considerations for Extracellular Vesicle Isolation and Biomarker Identification in Glioblastoma. Neurosurgery 2023; 93:33-42. [PMID: 36749103 DOI: 10.1227/neu.0000000000002393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/06/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released by all cells. Previous research has found that these microscopic vesicles contribute to intercellular signaling and communication. EVs carry a variety of cargo, including nucleic acids, proteins, metabolites, and lipids. The composition of EVs varies based on cell of origin. Therefore, EVs can serve as an important biomarker in the diagnosis and treatment of various cancers. EVs derived from glioblastoma (GBM) cells carry biomarkers, which could serve as the basis for a potential diagnostic strategy known as liquid biopsy. Multiple EV isolation techniques exist, including ultrafiltration, size exclusion chromatography, flow field-flow fractionation, sequential filtration, differential ultracentrifugation, and density-gradient ultracentrifugation. Recent and ongoing work aims to identify cellular markers to distinguish GBM-derived EVs from those released by noncancerous cells. Strategies include proteomic analysis of GBM EVs, identification of GBM-specific metabolites, and use of Food and Drug Administration-approved 5-aminolevulinic acid-an oral agent that causes fluorescence of GBM cells-to recognize GBM EVs in a patient's blood. In addition, accurately and precisely monitoring changes in EV cargo concentrations could help differentiate between pseudoprogression and GBM recurrence, thus preventing unnecessary surgical interventions.
Collapse
Affiliation(s)
- Luz M Cumba Garcia
- Department of Immunology, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Samantha M Bouchal
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Megan M J Bauman
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ian F Parney
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Cano A, Ettcheto M, Bernuz M, Puerta R, Esteban de Antonio E, Sánchez-López E, Souto EB, Camins A, Martí M, Pividori MI, Boada M, Ruiz A. Extracellular vesicles, the emerging mirrors of brain physiopathology. Int J Biol Sci 2023; 19:721-743. [PMID: 36778117 PMCID: PMC9910004 DOI: 10.7150/ijbs.79063] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 01/11/2023] Open
Abstract
Extracellular vesicles are secreted by a wide variety of cells, and their primary functions include intercellular communication, immune responses, human reproduction, and synaptic plasticity. Their molecular cargo reflects the physiological processes that their cells of origin are undergoing. Thus, many studies have suggested that extracellular vesicles could be a promising biomarker tool for many diseases, mainly due to their biological relevance and easy accessibility to a broad range of body fluids. Moreover, since their biological composition leads them to cross the blood-brain barrier bidirectionally, growing evidence points to extracellular vesicles as emerging mirrors of brain diseases processes. In this regard, this review explores the biogenesis and biological functions of extracellular vesicles, their role in different physiological and pathological processes, their potential in clinical practice, and the recent outstanding studies about the role of exosomes in major human brain diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or brain tumors.
Collapse
Affiliation(s)
- Amanda Cano
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.,Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain
| | - Mireia Bernuz
- Biosensing and Bioanalysis Group, Institut de Biotecnologia i de Biomedicina (IBB-UAB), Mòdul B Parc de Recerca UAB, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Raquel Puerta
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), Barcelona, Spain
| | | | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.,Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain.,Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal.,REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Antonio Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain
| | - Mercè Martí
- Biosensing and Bioanalysis Group, Institut de Biotecnologia i de Biomedicina (IBB-UAB), Mòdul B Parc de Recerca UAB, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - María Isabel Pividori
- Biosensing and Bioanalysis Group, Institut de Biotecnologia i de Biomedicina (IBB-UAB), Mòdul B Parc de Recerca UAB, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Agustín Ruiz
- Ace Alzheimer Center Barcelona - International University of Catalunya (UIC), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
4
|
Bianconi A, Aruta G, Rizzo F, Salvati LF, Zeppa P, Garbossa D, Cofano F. Systematic Review on Tumor Microenvironment in Glial Neoplasm: From Understanding Pathogenesis to Future Therapeutic Perspectives. Int J Mol Sci 2022; 23:4166. [PMID: 35456984 PMCID: PMC9029619 DOI: 10.3390/ijms23084166] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the multidisciplinary management in the treatment of glioblastomas, the average survival of GBM patients is still 15 months. In recent years, molecular biomarkers have gained more and more importance both in the diagnosis and therapy of glial tumors. At the same time, it has become clear that non neoplastic cells, which constitute about 30% of glioma mass, dramatically influence tumor growth, spread, and recurrence. This is the main reason why, in recent years, scientific research has been focused on understanding the function and the composition of tumor microenvironment and its role in gliomagenesis and recurrence. The aim of this review is to summarize the most recent discovery about resident microglia, tumor-associated macrophages, lymphocytes, and the role of extracellular vesicles and their bijective interaction with glioma cells. Moreover, we reported the most recent updates about new therapeutic strategies targeting immune system receptors and soluble factors. Understanding how glioma cells interact with non-neoplastic cells in tumor microenvironment is an essential step to comprehend mechanisms at the base of disease progression and to find new therapeutic strategies for GBM patients. However, no significant results have yet been obtained in studies targeting single molecules/pathways; considering the complex microenvironment, it is likely that only by using multiple therapeutic agents acting on multiple molecular targets can significant results be achieved.
Collapse
Affiliation(s)
- Andrea Bianconi
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Gelsomina Aruta
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Francesca Rizzo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | | | - Pietro Zeppa
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Diego Garbossa
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
| | - Fabio Cofano
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (G.A.); (F.R.); (P.Z.); (D.G.); (F.C.)
- Spine Surgery Unit, Humanitas Gradeningo, 10100 Turin, Italy
| |
Collapse
|