1
|
Jiang J, Man T, Kirsch M, Knoedler S, Andersen K, Reiser J, Werner J, Trautz B, Cong X, Forster S, Alageel S, Dornseifer U, Schilling AF, Machens HG, Kükrek H, Moog P. Hypoxia Preconditioned Serum Hydrogel (HPS-H) Accelerates Dermal Regeneration in a Porcine Wound Model. Gels 2024; 10:748. [PMID: 39590104 PMCID: PMC11593443 DOI: 10.3390/gels10110748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Harnessing the body's intrinsic resources for wound healing is becoming a rapidly advancing field in regenerative medicine research. This study investigates the effects of the topical application of a novel porcine Hypoxia Preconditioned Serum Hydrogel (HPS-H) on wound healing using a minipig model over a 21-day period. Porcine HPS exhibited up to 2.8× elevated levels of key angiogenic growth factors (VEGF-A, PDGF-BB, and bFGF) and demonstrated a superior angiogenic effect in a tube formation assay with human umbilical endothelial cells (HUVECs) in comparison to porcine normal serum (NS). Incorporating HPS into a hydrogel carrier matrix (HPS-H) facilitated the sustained release of growth factors for up to 5 days. In the in vivo experiment, wounds treated with HPS-H were compared to those treated with normal serum hydrogel (NS-H), hydrogel only (H), and no treatment (NT). At day 10 post-wounding, the HPS-H group was observed to promote up to 1.7× faster wound closure as a result of accelerated epithelialization and wound contraction. Hyperspectral imaging revealed up to 12.9% higher superficial tissue oxygenation and deep perfusion in HPS-H-treated wounds at day 10. The immunohistochemical staining of wound biopsies detected increased formation of blood vessels (CD31), lymphatic vessels (LYVE-1), and myofibroblasts (alpha-SMA) in the HPS-H group. These findings suggest that the topical application of HPS-H can significantly accelerate dermal wound healing in an autologous porcine model.
Collapse
Affiliation(s)
- Jun Jiang
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Tanita Man
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Manuela Kirsch
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Samuel Knoedler
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Kirstin Andersen
- Center for Preclinical Research, Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Judith Reiser
- Center for Preclinical Research, Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Julia Werner
- Center for Preclinical Research, Klinikum Rechts der Isar, TUM School of Medicine and Health, 81675 Munich, Germany
| | - Benjamin Trautz
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Xiaobin Cong
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Selma Forster
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Sarah Alageel
- Cellular Therapy and Immunobiology, Research and Innovation, King Faisal Specialist Hospital & Research Center, Al Mathar Ash Shamali, Riyadh 11564, Saudi Arabia
| | - Ulf Dornseifer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Isar Klinikum, 80331 Munich, Germany
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Hans-Günther Machens
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Haydar Kükrek
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Philipp Moog
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
2
|
Jian Y, Li Y, Zhang Y, Tang M, Deng M, Liu C, Cheng M, Xiao S, Deng C, Wei Z. Lymphangiogenesis: novel strategies to promote cutaneous wound healing. BURNS & TRAUMA 2024; 12:tkae040. [PMID: 39328366 PMCID: PMC11427083 DOI: 10.1093/burnst/tkae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 09/28/2024]
Abstract
The cutaneous lymphatic system regulates tissue inflammation, fluid balance and immunological responses. Lymphangiogenesis or lymphatic dysfunction may lead to lymphedema, immune deficiency, chronic inflammation etc. Tissue regeneration and healing depend on angiogenesis and lymphangiogenesis during wound healing. Tissue oedema and chronic inflammation can slow wound healing due to impaired lymphangiogenesis or lymphatic dysfunction. For example, impaired lymphangiogenesis or lymphatic dysfunction has been detected in nonhealing wounds such as diabetic ulcers, venous ulcers and bedsores. This review summarizes the structure and function of the cutaneous lymphatic vessel system and lymphangiogenesis in wounds. Furthermore, we review wound lymphangiogenesis processes and remodelling, especially the influence of the inflammatory phase. Finally, we outline how to control lymphangiogenesis to promote wound healing, assess the possibility of targeting lymphangiogenesis as a novel treatment strategy for chronic wounds and provide an analysis of the possible problems that need to be addressed.
Collapse
Affiliation(s)
- Yang Jian
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Yanqi Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Yanji Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Mingyuan Tang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Mingfu Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Chenxiaoxiao Liu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Maolin Cheng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003, China
| | - Chengliang Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003, China
| | - Zairong Wei
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003, China
| |
Collapse
|
3
|
Jiang J, Röper L, Fuchs F, Hanschen M, Failer S, Alageel S, Cong X, Dornseifer U, Schilling AF, Machens HG, Moog P. Bone Regenerative Effect of Injectable Hypoxia Preconditioned Serum-Fibrin (HPS-F) in an Ex Vivo Bone Defect Model. Int J Mol Sci 2024; 25:5315. [PMID: 38791352 PMCID: PMC11121588 DOI: 10.3390/ijms25105315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Biofunctionalized hydrogels are widely used in tissue engineering for bone repair. This study examines the bone regenerative effect of the blood-derived growth factor preparation of Hypoxia Preconditioned Serum (HPS) and its fibrin-hydrogel formulation (HPS-F) on drilled defects in embryonic day 19 chick femurs. Measurements of bone-related growth factors in HPS reveal significant elevations of Osteopontin, Osteoprotegerin, and soluble-RANKL compared with normal serum (NS) but no detection of BMP-2/7 or Osteocalcin. Growth factor releases from HPS-F are measurable for at least 7 days. Culturing drilled femurs organotypically on a liquid/gas interface with HPS media supplementation for 10 days demonstrates a 34.6% increase in bone volume and a 52.02% increase in bone mineral density (BMD) within the defect area, which are significantly higher than NS and a basal-media-control, as determined by microcomputed tomography. HPS-F-injected femur defects implanted on a chorioallantoic membrane (CAM) for 7 days exhibit an increase in bone mass of 123.5% and an increase in BMD of 215.2%, which are significantly higher than normal-serum-fibrin (NS-F) and no treatment. Histology reveals calcification, proteoglycan, and collagen fiber deposition in the defect area of HPS-F-treated femurs. Therefore, HPS-F may offer a promising and accessible therapeutic approach to accelerating bone regeneration by a single injection into the bone defect site.
Collapse
Affiliation(s)
- Jun Jiang
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| | - Lynn Röper
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| | - Finja Fuchs
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| | - Marc Hanschen
- Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (M.H.); (S.F.)
| | - Sandra Failer
- Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (M.H.); (S.F.)
| | - Sarah Alageel
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| | - Xiaobin Cong
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| | - Ulf Dornseifer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Isar Klinikum, D-80331 Munich, Germany;
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, D-37075 Göttingen, Germany;
| | - Hans-Günther Machens
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| | - Philipp Moog
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany; (J.J.); (L.R.); (F.F.); (S.A.); (X.C.)
| |
Collapse
|
4
|
Jiang J, Altammar J, Cong X, Ramsauer L, Steinbacher V, Dornseifer U, Schilling AF, Machens HG, Moog P. Hypoxia Preconditioned Serum (HPS) Promotes Proliferation and Chondrogenic Phenotype of Chondrocytes In Vitro. Int J Mol Sci 2023; 24:10441. [PMID: 37445617 PMCID: PMC10341616 DOI: 10.3390/ijms241310441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Autologous chondrocyte implantation (ACI) for the treatment of articular cartilage defects remains challenging in terms of maintaining chondrogenic phenotype during in vitro chondrocyte expansion. Growth factor supplementation has been found supportive in improving ACI outcomes by promoting chondrocyte redifferentiation. Here, we analysed the chondrogenic growth factor concentrations in the human blood-derived secretome of Hypoxia Preconditioned Serum (HPS) and assessed the effect of HPS-10% and HPS-40% on human articular chondrocytes from osteoarthritic cartilage at different time points compared to normal fresh serum (NS-10% and NS-40%) and FCS-10% culture conditions. In HPS, the concentrations of TGF-beta1, IGF-1, bFGF, PDGF-BB and G-CSF were found to be higher than in NS. Chondrocyte proliferation was promoted with higher doses of HPS (HPS-40% vs. HPS-10%) and longer stimulation (4 vs. 2 days) compared to FCS-10%. On day 4, immunostaining of the HPS-10%-treated chondrocytes showed increased levels of collagen type II compared to the other conditions. The promotion of the chondrogenic phenotype was validated with quantitative real-time PCR for the expression of collagen type II (COL2A1), collagen type I (COL1A1), SOX9 and matrix metalloproteinase 13 (MMP13). We demonstrated the highest differentiation index (COL2A1/COL1A1) in HPS-10%-treated chondrocytes on day 4. In parallel, the expression of differentiation marker SOX9 was elevated on day 4, with HPS-10% higher than NS-10/40% and FCS-10%. The expression of the cartilage remodelling marker MMP13 was comparable across all culture conditions. These findings implicate the potential of HPS-10% to improve conventional FCS-based ACI culture protocols by promoting the proliferation and chondrogenic phenotype of chondrocytes during in vitro expansion.
Collapse
Affiliation(s)
- Jun Jiang
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Jannat Altammar
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Xiaobin Cong
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Lukas Ramsauer
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Vincent Steinbacher
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Ulf Dornseifer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Isar Klinikum, D-80331 Munich, Germany
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | - Hans-Günther Machens
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| | - Philipp Moog
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, D-81675 Munich, Germany
| |
Collapse
|
5
|
Comparison of the Effect of Different Conditioning Media on the Angiogenic Potential of Hypoxia Preconditioned Blood-Derived Secretomes: Towards Engineering Next-Generation Autologous Growth Factor Cocktails. Int J Mol Sci 2023; 24:ijms24065485. [PMID: 36982558 PMCID: PMC10049474 DOI: 10.3390/ijms24065485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Hypoxia Preconditioned Plasma (HPP) and Serum (HPS) are regenerative blood-derived growth factor compositions that have been extensively examined for their angiogenic and lymphangiogenic activity towards wound healing and tissue repair. Optimization of these secretomes’ growth factor profile, through adjustments of the conditioning parameters, is a key step towards clinical application. In this study, the autologous liquid components (plasma/serum) of HPP and HPS were replaced with various conditioning media (NaCl, PBS, Glucose 5%, AIM V medium) and were analyzed in terms of key pro- (VEGF-A, EGF) and anti-angiogenic (TSP-1, PF-4) protein factors, as well as their ability to promote microvessel formation in vitro. We found that media substitution resulted in changes in the concentration of the aforementioned growth factors, and also influenced their ability to induce angiogenesis. While NaCl and PBS led to a lower concentration of all growth factors examined, and consequently an inferior tube formation response, replacement with Glucose 5% resulted in increased growth factor concentrations in anticoagulated blood-derived secretomes, likely due to stimulation of platelet factor release. Medium substitution with Glucose 5% and specialized peripheral blood cell-culture AIM V medium generated comparable tube formation to HPP and HPS controls. Altogether, our data suggest that medium replacement of plasma and serum may significantly influence the growth factor profile of hypoxia-preconditioned blood-derived secretomes and, therefore, their potential application as tools for promoting therapeutic angiogenesis.
Collapse
|
6
|
Jiang J, Cong X, Alageel S, Dornseifer U, Schilling AF, Hadjipanayi E, Machens HG, Moog P. In Vitro Comparison of Lymphangiogenic Potential of Hypoxia Preconditioned Serum (HPS) and Platelet-Rich Plasma (PRP). Int J Mol Sci 2023; 24:ijms24031961. [PMID: 36768283 PMCID: PMC9916704 DOI: 10.3390/ijms24031961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Strategies for therapeutic lymphangiogenesis are gradually directed toward the use of growth factor preparations. In particular, blood-derived growth factor products, including Hypoxia Preconditioned Serum (HPS) and Platelet-rich Plasma (PRP), are both clinically employed for accelerating tissue repair and have received considerable attention in the field of regenerative medicine research. In this study, a comparative analysis of HPS and PRP was conducted to explore their lymphangiogenic potential. We found higher pro-lymphangiogenic growth factor concentrations of VEGF-C, PDGF-BB, and bFGF in HPS in comparison to normal serum (NS) and PRP. The proliferation and migration of lymphatic endothelial cells (LECs) were promoted considerably with both HPS and PRP, but the strongest effect was achieved with HPS-40% dilution. Tube formation of LECs showed the highest number of tubes, branching points, greater tube length, and cell-covered area with HPS-10%. Finally, the effects were double-validated using an ex vivo lymphatic ring assay, in which the highest number of sprouts and the greatest sprout length were achieved with HPS-10%. Our findings demonstrate the superior lymphangiogenic potential of a new generation blood-derived secretome obtained by hypoxic preconditioning of peripheral blood cells-a method that offers a novel alternative to PRP.
Collapse
Affiliation(s)
- Jun Jiang
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Xiaobin Cong
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Sarah Alageel
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Ulf Dornseifer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Isar Klinikum, D-80331 Munich, Germany
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, Universitätsmedizin Göttingen, D-37075 Göttingen, Germany
| | - Ektoras Hadjipanayi
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
| | - Hans-Günther Machens
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
- Correspondence: (H.-G.M.); (P.M.)
| | - Philipp Moog
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany
- Correspondence: (H.-G.M.); (P.M.)
| |
Collapse
|
7
|
Jiang J, Röper L, Alageel S, Dornseifer U, Schilling AF, Hadjipanayi E, Machens HG, Moog P. Hypoxia Preconditioned Serum (HPS) Promotes Osteoblast Proliferation, Migration and Matrix Deposition. Biomedicines 2022; 10:biomedicines10071631. [PMID: 35884936 PMCID: PMC9313157 DOI: 10.3390/biomedicines10071631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
Interest in discovering new methods of employing natural growth factor preparations to promote bone fracture healing is becoming increasingly popular in the field of regenerative medicine. In this study, we were able to demonstrate the osteogenic potential of hypoxia preconditioned serum (HPS) on human osteoblasts in vitro. Human osteoblasts were stimulated with two HPS concentrations (10% and 40%) and subsequently analyzed at time points of days 2 and 4. In comparison to controls, a time- and dose-dependent (up to 14.2× higher) proliferation of osteoblasts was observed after 4 days of HPS-40% stimulation with lower lactate dehydrogenase (LDH)-levels detected than controls, indicating the absence of cytotoxic/stress effects of HPS on human osteoblasts. With regards to cell migration, it was found to be significantly faster with HPS-10% application after 72 h in comparison to controls. Further osteogenic response to HPS treatment was evaluated by employing culture supernatant analysis, which exhibited significant upregulation of OPG (Osteoprotegerin) with higher dosage (HPS-10% vs. HPS-40%) and longer duration (2 d vs. 4 d) of HPS stimulation. There was no detection of anti-osteogenic sRANKL (soluble Receptor Activator of NF-κB Ligand) after 4 days of HPS stimulation. In addition, ALP (alkaline phosphatase)-enzyme activity, was found to be upregulated, dose-dependently, after 4 days of HPS-40% application. When assessing ossification through Alizarin-Red staining, HPS dose-dependently achieved greater (up to 2.8× higher) extracellular deposition of calcium-phosphate with HPS-40% in comparison to controls. These findings indicate that HPS holds the potential to accelerate bone regeneration by osteogenic promotion of human osteoblasts.
Collapse
Affiliation(s)
- Jun Jiang
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (L.R.); (S.A.); (E.H.)
| | - Lynn Röper
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (L.R.); (S.A.); (E.H.)
| | - Sarah Alageel
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (L.R.); (S.A.); (E.H.)
| | - Ulf Dornseifer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Isar Klinikum, D-80331 Munich, Germany;
| | - Arndt F. Schilling
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, Universitätsmedizin Göttingen, D-37075 Göttingen, Germany;
| | - Ektoras Hadjipanayi
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (L.R.); (S.A.); (E.H.)
| | - Hans-Günther Machens
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (L.R.); (S.A.); (E.H.)
- Correspondence: (H.-G.M.); (P.M.)
| | - Philipp Moog
- Experimental Plastic Surgery, Clinic for Plastic, Reconstructive and Hand Surgery, Klinikum Rechts der Isar, Technische Universität München, D-81675 Munich, Germany; (J.J.); (L.R.); (S.A.); (E.H.)
- Correspondence: (H.-G.M.); (P.M.)
| |
Collapse
|