1
|
Garrosa-Miró Y, Muñoz-Moreno L, D'Errico G, Tancredi M, Carmena MJ, Ottaviani MF, Ortega P, de la Mata J. Ruthenium(II) and copper(II) polyamine complexes as promising antitumor agents: synthesis, characterization, and biological evaluation. Dalton Trans 2025. [PMID: 40232207 DOI: 10.1039/d4dt03377a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Ruthenium or copper complexes have emerged as some of the most promising alternatives for the treatment of many types of cancer. They have enhanced activity, greater selectivity and reduced side effects compared to their predecessors, cisplatin and its analogues. On the other hand, polyamine metabolism is often deregulated in cancer, leading to increased intracellular concentrations of polyamines that promote cell proliferation, differentiation, and tumorigenesis. In the present work, we report the synthesis and characterization of a family of mono- and binuclear Ru(II) and Cu(II) complexes functionalized with polyamine ligands derived from norspermine. The computer-aided analysis of the electron paramagnetic resonance (EPR) spectra provided magnetic and dynamic parameters, which helped to identify prevalent Cu-N2 coordination in a partially distorted square planar geometry of the Cu(II) complexes and the flexibility of the complexes in solution, slowed down by both the complex size and the hydrophobic interactions between chains. In vitro studies focused on advanced prostate cancer have demonstrated that these new metal complexes present a high level of cytotoxicity against PC3 cells. Furthermore, these metallic compounds exhibit the ability to inhibit cell adhesion and migration while reducing intracellular reactive oxygen species levels, which are key factors of metastasis.
Collapse
Affiliation(s)
- Yoel Garrosa-Miró
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
- Institute "Ramón y Cajal" for Health Research (IRYCIS), Spain
| | - Laura Muñoz-Moreno
- Universidad de Alcalá, Department of Biology of Systems, Biochemistry and Molecular Biology Unit, Madrid, Spain
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, Complesso Universitario di Monte Sant'Angelo, I-80126 Naples, Italy
| | - Matilde Tancredi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, Complesso Universitario di Monte Sant'Angelo, I-80126 Naples, Italy
| | - M Jose Carmena
- Universidad de Alcalá, Department of Biology of Systems, Biochemistry and Molecular Biology Unit, Madrid, Spain
| | - M Francesca Ottaviani
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", Via Saffi 2, I-61029 Urbino, Italy
| | - Paula Ortega
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
- Institute "Ramón y Cajal" for Health Research (IRYCIS), Spain
| | - Javier de la Mata
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
- Institute "Ramón y Cajal" for Health Research (IRYCIS), Spain
| |
Collapse
|
2
|
Carneiro T, Batista de Carvalho ALM, Vojtek M, Laginha RC, Marques MPM, Diniz C, Gil AM. Pd 2Spermine as an Alternative Therapeutics for Cisplatin-Resistant Triple-Negative Breast Cancer. J Med Chem 2024; 67:6839-6853. [PMID: 38590144 PMCID: PMC11056979 DOI: 10.1021/acs.jmedchem.4c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Cisplatin (cDDP) resistance is a matter of concern in triple-negative breast cancer therapeutics. We measured the metabolic response of cDDP-sensitive (S) and -resistant (R) MDA-MB-231 cells to Pd2Spermine(Spm) (a possible alternative to cDDP) compared to cDDP to investigate (i) intrinsic response/resistance mechanisms and (ii) the potential cytotoxic role of Pd2Spm. Cell extracts were analyzed by untargeted nuclear magnetic resonance metabolomics, and cell media were analyzed for particular metabolites. CDDP-exposed S cells experienced enhanced antioxidant protection and small deviations in the tricarboxylic acid cycle (TCA), pyrimidine metabolism, and lipid oxidation (proposed cytotoxicity signature). R cells responded more strongly to cDDP, suggesting a resistance signature of activated TCA cycle, altered AMP/ADP/ATP and adenine/uracil fingerprints, and phospholipid biosynthesis (without significant antioxidant protection). Pd2Spm impacted more markedly on R/S cell metabolisms, inducing similarities to cDDP/S cells (probably reflecting high cytotoxicity) and strong additional effects indicative of amino acid depletion, membrane degradation, energy/nucleotide adaptations, and a possible beneficial intracellular γ-aminobutyrate/glutathione-mediated antioxidant mechanism.
Collapse
Affiliation(s)
- Tatiana
J. Carneiro
- Department
of Chemistry and CICECO − Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Molecular
Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- LAQV/REQUIMTE,
Laboratory of Pharmacology, Department of Drug Sciences, Faculty of
Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | | | - Martin Vojtek
- LAQV/REQUIMTE,
Laboratory of Pharmacology, Department of Drug Sciences, Faculty of
Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Raquel C. Laginha
- Molecular
Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Maria Paula M. Marques
- Molecular
Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Department
of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Carmen Diniz
- LAQV/REQUIMTE,
Laboratory of Pharmacology, Department of Drug Sciences, Faculty of
Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Ana M. Gil
- Department
of Chemistry and CICECO − Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Marques MPM, de Carvalho ALMB, Martins CB, Silva JD, Sarter M, García Sakai V, Stewart JR, de Carvalho LAEB. Cellular dynamics as a marker of normal-to-cancer transition in human cells. Sci Rep 2023; 13:21079. [PMID: 38030663 PMCID: PMC10687084 DOI: 10.1038/s41598-023-47649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
Normal-to-cancer (NTC) transition is known to be closely associated to cell´s biomechanical properties which are dependent on the dynamics of the intracellular medium. This study probes different human cancer cells (breast, prostate and lung), concomitantly to their healthy counterparts, aiming at characterising the dynamical profile of water in distinct cellular locations, for each type of cell, and how it changes between normal and cancer states. An increased plasticity of the cytomatrix is observed upon normal-to-malignant transformation, the lung carcinoma cells displaying the highest flexibility followed by prostate and breast cancers. Also, lung cells show a distinct behaviour relative to breast and prostate, with a higher influence from hydration water motions and localised fast rotations upon NTC transformation. Quasielastic neutron scattering techniques allowed to accurately distinguish the different dynamical processes taking place within these highly heterogeneous cellular systems. The results thus obtained suggest that intracellular water dynamics may be regarded as a specific reporter of the cellular conditions-either healthy or malignant.
Collapse
Affiliation(s)
- M P M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - A L M Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.
| | - C B Martins
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - J D Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - M Sarter
- STFC Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, OX11 0QX, UK
| | - V García Sakai
- STFC Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, OX11 0QX, UK
| | - J R Stewart
- STFC Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, OX11 0QX, UK
| | - L A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal
| |
Collapse
|
4
|
Vojtek M, Martins CB, Ramos R, Duarte SG, Ferreira IMPLVO, Batista de Carvalho ALM, Marques MPM, Diniz C. Pd(II) and Pt(II) Trinuclear Chelates with Spermidine: Selective Anticancer Activity towards TNBC-Sensitive and -Resistant to Cisplatin. Pharmaceutics 2023; 15:1205. [PMID: 37111690 PMCID: PMC10145437 DOI: 10.3390/pharmaceutics15041205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive forms of breast cancer and constitutes 10-20% of all breast cancer cases. Even though platinum-based drugs such as cisplatin and carboplatin are effective in TNBC patients, their toxicity and development of cancer drug resistance often hamper their clinical use. Hence, novel drug entities with improved tolerability and selectivity profiles, as well as the ability to surpass resistance, are needed. The current study focuses on Pd(II) and Pt(II) trinuclear chelates with spermidine (Pd3Spd2 and Pt3Spd2) for evaluating their antineoplastic activity having been assessed towards (i) cisplatin-resistant TNBC cells (MDA-MB-231/R), (ii) cisplatin-sensitive TNBC cells (MDA-MB-231) and (iii) non-cancerous human breast cells (MCF-12A, to assess the cancer selectivity/selectivity index). Additionally, the complexes' ability to overcome acquired resistance (resistance index) was determined. This study revealed that Pd3Spd2 activity greatly exceeds that displayed by its Pt analog. In addition, Pd3Spd2 evidenced a similar antiproliferative activity in both sensitive and resistant TNBC cells (IC50 values 4.65-8.99 µM and 9.24-13.34 µM, respectively), with a resistance index lower than 2.3. Moreover, this Pd compound showed a promising selectivity index ratio: >6.28 for MDA-MB-231 cells and >4.59 for MDA-MB-231/R cells. Altogether, the data presently gathered reveal Pd3Spd2 as a new, promising metal-based anticancer agent, which should be further explored for the treatment of TNBC and its cisplatin-resistant forms.
Collapse
Affiliation(s)
- Martin Vojtek
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Clara B. Martins
- Molecular Physical-Chemistry R & D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Raquel Ramos
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sara Gomes Duarte
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Isabel M. P. L. V. O. Ferreira
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | | | - M. Paula M. Marques
- Molecular Physical-Chemistry R & D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Carneiro TJ, Vojtek M, Gonçalves-Monteiro S, Batista de Carvalho ALM, Marques MPM, Diniz C, Gil AM. Effect of Pd 2Spermine on Mice Brain-Liver Axis Metabolism Assessed by NMR Metabolomics. Int J Mol Sci 2022; 23:13773. [PMID: 36430252 PMCID: PMC9693583 DOI: 10.3390/ijms232213773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Cisplatin (cDDP)-based chemotherapy is often limited by severe deleterious effects (nephrotoxicity, hepatotoxicity and neurotoxicity). The polynuclear palladium(II) compound Pd2Spermine (Pd2Spm) has emerged as a potential alternative drug, with favorable pharmacokinetic/pharmacodynamic properties. This paper reports on a Nuclear Magnetic Resonance metabolomics study to (i) characterize the response of mice brain and liver to Pd2Spm, compared to cDDP, and (ii) correlate brain-liver metabolic variations. Multivariate and correlation analysis of the spectra of polar and lipophilic brain and liver extracts from an MDA-MB-231 cell-derived mouse model revealed a stronger impact of Pd2Spm on brain metabolome, compared to cDDP. This was expressed by changes in amino acids, inosine, cholate, pantothenate, fatty acids, phospholipids, among other compounds. Liver was less affected than brain, with cDDP inducing more metabolite changes. Results suggest that neither drug induces neuronal damage or inflammation, and that Pd2Spm seems to lead to enhanced brain anti-inflammatory and antioxidant mechanisms, regulation of brain bioactive metabolite pools and adaptability of cell membrane characteristics. The cDDP appears to induce higher extension of liver damage and an enhanced need for liver regeneration processes. This work demonstrates the usefulness of untargeted metabolomics in evaluating drug impact on multiple organs, while confirming Pd2Spm as a promising replacement of cDDP.
Collapse
Affiliation(s)
- Tatiana J. Carneiro
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Martin Vojtek
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | | | - Maria Paula M. Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Carmen Diniz
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Ana M. Gil
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Metal-Based Complexes in Cancer Treatment. Biomedicines 2022; 10:biomedicines10102573. [PMID: 36289835 PMCID: PMC9599845 DOI: 10.3390/biomedicines10102573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
|