1
|
Wang Y, Hu Z, Wang H. The clinical implications and interpretability of computational medical imaging (radiomics) in brain tumors. Insights Imaging 2025; 16:77. [PMID: 40159380 PMCID: PMC11955438 DOI: 10.1186/s13244-025-01950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
Radiomics has widespread applications in the field of brain tumor research. However, radiomic analyses often function as a 'black box' due to their use of complex algorithms, which hinders the translation of brain tumor radiomics into clinical applications. In this review, we will elaborate extensively on the application of radiomics in brain tumors. Additionally, we will address the interpretability of handcrafted-feature radiomics and deep learning-based radiomics by integrating biological domain knowledge of brain tumors with interpretability methods. Furthermore, we will discuss the current challenges and prospects concerning the interpretability of brain tumor radiomics. Enhancing the interpretability of radiomics may make it more understandable for physicians, ultimately facilitating its translation into clinical practice. CRITICAL RELEVANCE STATEMENT: The interpretability of brain tumor radiomics empowers neuro-oncologists to make well-informed decisions from radiomic models. KEY POINTS: Radiomics makes a significant impact on the management of brain tumors in several key clinical areas. Transparent models, habitat analysis, and feature attribute explanations can enhance the interpretability of traditional handcrafted-feature radiomics in brain tumors. Various interpretability methods have been applied to explain deep learning-based models; however, there is a lack of biological mechanisms underlying these models.
Collapse
Affiliation(s)
- Yixin Wang
- Department of Brain Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, P. R. China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| | - Zongtao Hu
- Department of Brain Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, P. R. China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China
| | - Hongzhi Wang
- Department of Brain Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, P. R. China.
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China.
| |
Collapse
|
2
|
Gunasundari C, Selva Bhuvaneswari K. A novel approach for the detection of brain tumor and its classification via independent component analysis. Sci Rep 2025; 15:8252. [PMID: 40064997 PMCID: PMC11894048 DOI: 10.1038/s41598-025-87934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/23/2025] [Indexed: 03/14/2025] Open
Abstract
A brain tumor is regarded as one of the deadliest types of cancer due to its intricate nature.This is why it is important that patients get the best possible diagnosis and treatment options. With the help of machine vision, neurologists can now perform a more accurate and faster diagnosis. There are currently no suitable methods that can be used to perform brain segmentation using image processing recently neural network model is used that it can perform better than other methods. Unfortunately, due to the complexity of the model, performing accurate brain segmentation in real images is not feasible. The main objective is to develop a novel method that can be used to analyze brain tumors using a component analysis. The proposed model consists of a deep neural network and an image processing framework. It is divided into various phases, such as the mapping stage, the data augmentation stage, and the tumor discovery stage. The data augmentation stage involves training a CNN to identify the regions of the image that are overlapping with the tumor space marker. The DCNN's predicted performance is compared with the test result. The third stage is focused on training a deep neural system and a SVM. This model was able to achieve a 99% accuracy rate and a sensitivity of 0.973%. It is primarily utilized for identifying brain tumors.
Collapse
Affiliation(s)
- C Gunasundari
- School of Computing, SRM Institute of Science and Technology, Tiruchirappalli, India.
| | - K Selva Bhuvaneswari
- Department of Computer Science and Engineering, University College of Engineering Kancheepuram, Kancheepuram, India
| |
Collapse
|
3
|
Chandraprabha K, Ganesan L, Baskaran K. A novel approach for the detection of brain tumor and its classification via end-to-end vision transformer - CNN architecture. Front Oncol 2025; 15:1508451. [PMID: 40129914 PMCID: PMC11930840 DOI: 10.3389/fonc.2025.1508451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/23/2025] [Indexed: 03/26/2025] Open
Abstract
The diagnosis and treatment of brain tumors can be challenging. They are a main cause of central nervous system disorder and uncontrolled proliferation. Early detection is also very important to ensure that the intervention is successful and delayed diagnosis is a significant factor contributing to lower survival rates for specific types. This is because the doctors lack the necessary experience and expertise to carry out this procedure. Classification systems are required for the detection of brain tumor and Histopathology is a vital part of brain tumor diagnosis. Despite the numerous automated tools that have been used in this field, surgeons still need to manually generate annotations for the areas of interest in the images. The report presents a vision transformer that can analyze brain tumors utilizing the Convolution Neural Network framework. The study's goal is to create an image that can distinguish malignant tumors in the brain. The experiments are performed on a dataset of 4,855 image featuring various tumor classes. This model is able to achieve a 99.64% accuracy. It has a 95% confidence interval and a 99.42% accuracy rate. The proposed method is more accurate than current computer vision techniques which only aim to achieve an accuracy range between 95% and 98%. The results of our study indicate that the use of the ViT model could lead to better treatment and diagnosis of brain tumors. The models performance is evaluated according to various criteria, such as sensitivity, precision, recall, and specificity. The suggested technique demonstrated superior results over current methods. The research results reinforced the utilization of the ViT model for identifying brain tumors. The information it offers will serve as a basis for further research on this area.
Collapse
Affiliation(s)
- K. Chandraprabha
- Department of Computer Science and Engineering, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, Tamil Nadu, India
| | - L. Ganesan
- Department of Computer Science and Engineering (CSE), Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, Tamil Nadu, India
| | - K. Baskaran
- Department of Electrical and Electronics Engineering (EEE), Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, Tamil Nadu, India
| |
Collapse
|
4
|
Lian Y, Shi Y, Shang H, Zhan H. Predicting Treatment Outcomes in Patients with Low Back Pain Using Gene Signature-Based Machine Learning Models. Pain Ther 2025; 14:359-373. [PMID: 39722081 PMCID: PMC11751268 DOI: 10.1007/s40122-024-00700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION Low back pain (LBP) is a significant global health burden, with variable treatment outcomes and an unclear underlying molecular mechanism. Effective prediction of treatment responses remains a challenge. In this study, we aimed to develop gene signature-based machine learning models using transcriptomic data from peripheral immune cells to predict treatment outcomes in patients with LBP. METHODS The transcriptomic data of patients with LBP from peripheral immune cells were retrieved from the GEO database. Patients with LBP were recruited, and treatment outcomes were assessed after 3 months. Patients were classified into two groups: those with resolved pain and those with persistent pain. Differentially expressed genes (DEGs) between the two groups were identified through bioinformatic analysis. Key genes were selected using five machine learning models, including Lasso, Elastic Net, Random Forest, SVM, and GBM. These key genes were then used to train 45 machine learning models by combining nine different algorithms: Logistic Regression, K-Nearest Neighbors, Support Vector Machine, Decision Tree, Random Forest, Gradient Boosting Machine, Multilayer Perceptron, Naive Bayes, and Linear Discriminant Analysis. Five-fold cross-validation was employed to ensure robust model evaluation and minimize overfitting. In each fold, the dataset was split into training and validation sets, with model performance assessed using multiple metrics including accuracy, precision, recall, and F1 score. The final model performance was reported as the mean and standard deviation across all five folds, providing a more reliable estimate of the models' ability to predict LBP treatment outcomes using gene expression data from peripheral immune cells. RESULTS A total of 61 DEGs were identified between patients with resolved and persistent pain. From these genes, 45 machine learning models were constructed using different combinations of feature selection methods and classification algorithms. The Elastic Net with Logistic Regression achieved the highest accuracy of 88.7% ± 8.0% (mean ± standard deviation), followed closely by Elastic Net with Linear Discriminant Analysis (88.7% ± 7.5%) and Lasso with Multilayer Perceptron (87.7% ± 6.7%). Overall, 15 models demonstrated robust performance with accuracy > 80%, suggesting the reliability of our machine learning approach in predicting LBP treatment outcomes. The SHapley Additive exPlanations (SHAP) method was used to visualize the contribution of core genes to model performance, highlighting their roles in predicting treatment outcomes. CONCLUSION The study demonstrates the potential of using transcriptomic data from peripheral immune cells and machine learning models to predict treatment outcomes in patients with LBP. The identification of key genes and the high accuracy of certain models provide a basis for future personalized treatment strategies in LBP management. Visualizing gene importance with SHAP adds interpretability to the predictive models, enhancing their clinical relevance.
Collapse
Affiliation(s)
- Youzhi Lian
- Baoshan Hospital Affiliated to Shanghai University of Chinese Medicine, Shanghai, 201999, China
- Baoshan District Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, 201999, China
| | - Yinyu Shi
- Shanghai University of Traditional Chinese Medicine Affiliated Shuguang Hospital, Shanghai, 200021, China
- Shi's Orthopedic Medical Center, Shanghai, 200021, China
| | - Haibin Shang
- Baoshan Hospital Affiliated to Shanghai University of Chinese Medicine, Shanghai, 201999, China
- Baoshan District Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, 201999, China
| | - Hongsheng Zhan
- Shanghai University of Traditional Chinese Medicine Affiliated Shuguang Hospital, Shanghai, 200021, China.
- Shi's Orthopedic Medical Center, Shanghai, 200021, China.
| |
Collapse
|
5
|
Tandel GS, Tiwari A, Kakde OG. Multi-Class Brain Tumor Grades Classification Using a Deep Learning-Based Majority Voting Algorithm and Its Validation Using Explainable-AI. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-024-01368-4. [PMID: 39779641 DOI: 10.1007/s10278-024-01368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Biopsy is considered the gold standard for diagnosing brain tumors, but its invasive nature can pose risks to patients. Additionally, tissue analysis can be cumbersome and inconsistent among observers. This research aims to develop a cost-effective, non-invasive, MRI-based computer-aided diagnosis tool that can reliably, accurately and swiftly identify brain tumor grades. Our system employs ensemble deep learning (EDL) within an MRI multiclass framework that includes five datasets: two-class (C2), three-class (C3), four-class (C4), five-class (C5) and six-class (C6). The EDL utilizes a majority voting algorithm to classify brain tumors by combining seven renowned deep learning (DL) models-EfficientNet, VGG16, ResNet18, GoogleNet, ResNet50, Inception-V3 and DarkNet-and seven machine learning (ML) models, including support vector machine, K-nearest neighbour, Naïve Bayes, decision tree, linear discriminant analysis, artificial neural network and random forest. Additionally, local interpretable model-agnostic explanations (LIME) are employed as an explainable AI algorithm, providing a visual representation of the CNN's internal workings to enhance the credibility of the results. Through extensive five-fold cross-validation experiments, the DL-based majority voting algorithm outperformed the ML-based majority voting algorithm, achieving the highest average accuracies of 100 ± 0.00%, 98.55 ± 0.35%, 98.47 ± 0.63%, 95.34 ± 1.17% and 96.61 ± 0.85% for the C2, C3, C4, C5 and C6 datasets, respectively. Majority voting algorithms typically yield consistent results across different folds of the brain tumor data and enhance performance compared to any individual deep learning and machine learning models.
Collapse
Affiliation(s)
- Gopal Singh Tandel
- Department of Computer Science, Allahabad Degree College, University of Allahabad, Prayagraj, India.
| | - Ashish Tiwari
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| | - Omprakash G Kakde
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology, Nagpur, India
| |
Collapse
|
6
|
Berghout T. The Neural Frontier of Future Medical Imaging: A Review of Deep Learning for Brain Tumor Detection. J Imaging 2024; 11:2. [PMID: 39852315 PMCID: PMC11766058 DOI: 10.3390/jimaging11010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Brain tumor detection is crucial in medical research due to high mortality rates and treatment challenges. Early and accurate diagnosis is vital for improving patient outcomes, however, traditional methods, such as manual Magnetic Resonance Imaging (MRI) analysis, are often time-consuming and error-prone. The rise of deep learning has led to advanced models for automated brain tumor feature extraction, segmentation, and classification. Despite these advancements, comprehensive reviews synthesizing recent findings remain scarce. By analyzing over 100 research papers over past half-decade (2019-2024), this review fills that gap, exploring the latest methods and paradigms, summarizing key concepts, challenges, datasets, and offering insights into future directions for brain tumor detection using deep learning. This review also incorporates an analysis of previous reviews and targets three main aspects: feature extraction, segmentation, and classification. The results revealed that research primarily focuses on Convolutional Neural Networks (CNNs) and their variants, with a strong emphasis on transfer learning using pre-trained models. Other methods, such as Generative Adversarial Networks (GANs) and Autoencoders, are used for feature extraction, while Recurrent Neural Networks (RNNs) are employed for time-sequence modeling. Some models integrate with Internet of Things (IoT) frameworks or federated learning for real-time diagnostics and privacy, often paired with optimization algorithms. However, the adoption of eXplainable AI (XAI) remains limited, despite its importance in building trust in medical diagnostics. Finally, this review outlines future opportunities, focusing on image quality, underexplored deep learning techniques, expanding datasets, and exploring deeper learning representations and model behavior such as recurrent expansion to advance medical imaging diagnostics.
Collapse
Affiliation(s)
- Tarek Berghout
- Laboratory of Automation and Manufacturing Engineering, Department of Industrial Engineering, Batna 2 University, Batna 05000, Algeria
| |
Collapse
|
7
|
Gopinath K, Hoopes A, Alexander DC, Arnold SE, Balbastre Y, Billot B, Casamitjana A, Cheng Y, Chua RYZ, Edlow BL, Fischl B, Gazula H, Hoffmann M, Keene CD, Kim S, Kimberly WT, Laguna S, Larson KE, Van Leemput K, Puonti O, Rodrigues LM, Rosen MS, Tregidgo HFJ, Varadarajan D, Young SI, Dalca AV, Iglesias JE. Synthetic data in generalizable, learning-based neuroimaging. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-22. [PMID: 39850547 PMCID: PMC11752692 DOI: 10.1162/imag_a_00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 01/25/2025]
Abstract
Synthetic data have emerged as an attractive option for developing machine-learning methods in human neuroimaging, particularly in magnetic resonance imaging (MRI)-a modality where image contrast depends enormously on acquisition hardware and parameters. This retrospective paper reviews a family of recently proposed methods, based on synthetic data, for generalizable machine learning in brain MRI analysis. Central to this framework is the concept of domain randomization, which involves training neural networks on a vastly diverse array of synthetically generated images with random contrast properties. This technique has enabled robust, adaptable models that are capable of handling diverse MRI contrasts, resolutions, and pathologies, while working out-of-the-box, without retraining. We have successfully applied this method to tasks such as whole-brain segmentation (SynthSeg), skull-stripping (SynthStrip), registration (SynthMorph, EasyReg), super-resolution, and MR contrast transfer (SynthSR). Beyond these applications, the paper discusses other possible use cases and future work in our methodology. Neural networks trained with synthetic data enable the analysis of clinical MRI, including large retrospective datasets, while greatly alleviating (and sometimes eliminating) the need for substantial labeled datasets, and offer enormous potential as robust tools to address various research goals.
Collapse
Affiliation(s)
- Karthik Gopinath
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrew Hoopes
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - Steven E. Arnold
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yael Balbastre
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Benjamin Billot
- Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - You Cheng
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Russ Yue Zhi Chua
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Brian L. Edlow
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Bruce Fischl
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Malte Hoffmann
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - C. Dirk Keene
- University of Washington, Seattle, WA, United States
| | | | - W. Taylor Kimberly
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Kathleen E. Larson
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Koen Van Leemput
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Oula Puonti
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Copenhagen University Hospital, København, Denmark
| | - Livia M. Rodrigues
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Universidade Estadual de Campinas, São Paulo, Brazil
| | - Matthew S. Rosen
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Divya Varadarajan
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sean I. Young
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Adrian V. Dalca
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Juan Eugenio Iglesias
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Massachusetts Institute of Technology, Cambridge, MA, United States
- University College London, London, England
| |
Collapse
|
8
|
Yoon JT, Lee KM, Oh JH, Kim HG, Jeong JW. Insights and Considerations in Development and Performance Evaluation of Generative Adversarial Networks (GANs): What Radiologists Need to Know. Diagnostics (Basel) 2024; 14:1756. [PMID: 39202244 PMCID: PMC11353572 DOI: 10.3390/diagnostics14161756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
The rapid development of deep learning in medical imaging has significantly enhanced the capabilities of artificial intelligence while simultaneously introducing challenges, including the need for vast amounts of training data and the labor-intensive tasks of labeling and segmentation. Generative adversarial networks (GANs) have emerged as a solution, offering synthetic image generation for data augmentation and streamlining medical image processing tasks through models such as cGAN, CycleGAN, and StyleGAN. These innovations not only improve the efficiency of image augmentation, reconstruction, and segmentation, but also pave the way for unsupervised anomaly detection, markedly reducing the reliance on labeled datasets. Our investigation into GANs in medical imaging addresses their varied architectures, the considerations for selecting appropriate GAN models, and the nuances of model training and performance evaluation. This paper aims to provide radiologists who are new to GAN technology with a thorough understanding, guiding them through the practical application and evaluation of GANs in brain imaging with two illustrative examples using CycleGAN and pixel2style2pixel (pSp)-combined StyleGAN. It offers a comprehensive exploration of the transformative potential of GANs in medical imaging research. Ultimately, this paper strives to equip radiologists with the knowledge to effectively utilize GANs, encouraging further research and application within the field.
Collapse
Affiliation(s)
- Jeong Taek Yoon
- Department of Radiology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (J.T.Y.); (H.-G.K.)
| | - Kyung Mi Lee
- Department of Radiology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (J.T.Y.); (H.-G.K.)
| | - Jang-Hoon Oh
- Department of Radiology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (J.T.Y.); (H.-G.K.)
| | - Hyug-Gi Kim
- Department of Radiology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (J.T.Y.); (H.-G.K.)
| | - Ji Won Jeong
- Department of Medicine, Graduate School, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea;
| |
Collapse
|
9
|
Reddy CKK, Reddy PA, Janapati H, Assiri B, Shuaib M, Alam S, Sheneamer A. A fine-tuned vision transformer based enhanced multi-class brain tumor classification using MRI scan imagery. Front Oncol 2024; 14:1400341. [PMID: 39091923 PMCID: PMC11291226 DOI: 10.3389/fonc.2024.1400341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Brain tumors occur due to the expansion of abnormal cell tissues and can be malignant (cancerous) or benign (not cancerous). Numerous factors such as the position, size, and progression rate are considered while detecting and diagnosing brain tumors. Detecting brain tumors in their initial phases is vital for diagnosis where MRI (magnetic resonance imaging) scans play an important role. Over the years, deep learning models have been extensively used for medical image processing. The current study primarily investigates the novel Fine-Tuned Vision Transformer models (FTVTs)-FTVT-b16, FTVT-b32, FTVT-l16, FTVT-l32-for brain tumor classification, while also comparing them with other established deep learning models such as ResNet50, MobileNet-V2, and EfficientNet - B0. A dataset with 7,023 images (MRI scans) categorized into four different classes, namely, glioma, meningioma, pituitary, and no tumor are used for classification. Further, the study presents a comparative analysis of these models including their accuracies and other evaluation metrics including recall, precision, and F1-score across each class. The deep learning models ResNet-50, EfficientNet-B0, and MobileNet-V2 obtained an accuracy of 96.5%, 95.1%, and 94.9%, respectively. Among all the FTVT models, FTVT-l16 model achieved a remarkable accuracy of 98.70% whereas other FTVT models FTVT-b16, FTVT-b32, and FTVT-132 achieved an accuracy of 98.09%, 96.87%, 98.62%, respectively, hence proving the efficacy and robustness of FTVT's in medical image processing.
Collapse
Affiliation(s)
- C. Kishor Kumar Reddy
- Department of Computer Science and Engineering, Stanley College of Engineering and Technology for Women, Hyderabad, India
| | - Pulakurthi Anaghaa Reddy
- Department of Computer Science and Engineering, Stanley College of Engineering and Technology for Women, Hyderabad, India
| | - Himaja Janapati
- Department of Computer Science and Engineering, Stanley College of Engineering and Technology for Women, Hyderabad, India
| | - Basem Assiri
- Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Shuaib
- Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia
| | - Shadab Alam
- Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia
| | - Abdullah Sheneamer
- Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
10
|
Rasheed Z, Ma YK, Ullah I, Al-Khasawneh M, Almutairi SS, Abohashrh M. Integrating Convolutional Neural Networks with Attention Mechanisms for Magnetic Resonance Imaging-Based Classification of Brain Tumors. Bioengineering (Basel) 2024; 11:701. [PMID: 39061782 PMCID: PMC11273980 DOI: 10.3390/bioengineering11070701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
The application of magnetic resonance imaging (MRI) in the classification of brain tumors is constrained by the complex and time-consuming characteristics of traditional diagnostics procedures, mainly because of the need for a thorough assessment across several regions. Nevertheless, advancements in deep learning (DL) have facilitated the development of an automated system that improves the identification and assessment of medical images, effectively addressing these difficulties. Convolutional neural networks (CNNs) have emerged as steadfast tools for image classification and visual perception. This study introduces an innovative approach that combines CNNs with a hybrid attention mechanism to classify primary brain tumors, including glioma, meningioma, pituitary, and no-tumor cases. The proposed algorithm was rigorously tested with benchmark data from well-documented sources in the literature. It was evaluated alongside established pre-trained models such as Xception, ResNet50V2, Densenet201, ResNet101V2, and DenseNet169. The performance metrics of the proposed method were remarkable, demonstrating classification accuracy of 98.33%, precision and recall of 98.30%, and F1-score of 98.20%. The experimental finding highlights the superior performance of the new approach in identifying the most frequent types of brain tumors. Furthermore, the method shows excellent generalization capabilities, making it an invaluable tool for healthcare in diagnosing brain conditions accurately and efficiently.
Collapse
Affiliation(s)
- Zahid Rasheed
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China; (Z.R.); (Y.-K.M.)
| | - Yong-Kui Ma
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China; (Z.R.); (Y.-K.M.)
| | - Inam Ullah
- Department of Computer Engineering, Gachon University, Sujeong-gu, Seongman 13120, Republic of Korea
| | - Mahmoud Al-Khasawneh
- School of Computing, Skyline University College, University City Sharjah, Sharjah 1797, United Arab Emirates;
- Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan
- Jadara University Research Center, Jadara University, Irbid 21110, Jordan
| | - Sulaiman Sulmi Almutairi
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Qassim 51452, Saudi Arabia;
| | - Mohammed Abohashrh
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| |
Collapse
|
11
|
Piffer S, Ubaldi L, Tangaro S, Retico A, Talamonti C. Tackling the small data problem in medical image classification with artificial intelligence: a systematic review. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:032001. [PMID: 39655846 DOI: 10.1088/2516-1091/ad525b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/30/2024] [Indexed: 12/18/2024]
Abstract
Though medical imaging has seen a growing interest in AI research, training models require a large amount of data. In this domain, there are limited sets of data available as collecting new data is either not feasible or requires burdensome resources. Researchers are facing with the problem of small datasets and have to apply tricks to fight overfitting. 147 peer-reviewed articles were retrieved from PubMed, published in English, up until 31 July 2022 and articles were assessed by two independent reviewers. We followed the Preferred Reporting Items for Systematic reviews and Meta-Analyse (PRISMA) guidelines for the paper selection and 77 studies were regarded as eligible for the scope of this review. Adherence to reporting standards was assessed by using TRIPOD statement (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis). To solve the small data issue transfer learning technique, basic data augmentation and generative adversarial network were applied in 75%, 69% and 14% of cases, respectively. More than 60% of the authors performed a binary classification given the data scarcity and the difficulty of the tasks. Concerning generalizability, only four studies explicitly stated an external validation of the developed model was carried out. Full access to all datasets and code was severely limited (unavailable in more than 80% of studies). Adherence to reporting standards was suboptimal (<50% adherence for 13 of 37 TRIPOD items). The goal of this review is to provide a comprehensive survey of recent advancements in dealing with small medical images samples size. Transparency and improve quality in publications as well as follow existing reporting standards are also supported.
Collapse
Affiliation(s)
- Stefano Piffer
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- National Institute for Nuclear Physics (INFN), Florence Division, Florence, Italy
| | - Leonardo Ubaldi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- National Institute for Nuclear Physics (INFN), Florence Division, Florence, Italy
| | - Sabina Tangaro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- INFN, Bari Division, Bari, Italy
| | | | - Cinzia Talamonti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- National Institute for Nuclear Physics (INFN), Florence Division, Florence, Italy
| |
Collapse
|
12
|
Pitarch C, Ungan G, Julià-Sapé M, Vellido A. Advances in the Use of Deep Learning for the Analysis of Magnetic Resonance Image in Neuro-Oncology. Cancers (Basel) 2024; 16:300. [PMID: 38254790 PMCID: PMC10814384 DOI: 10.3390/cancers16020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Machine Learning is entering a phase of maturity, but its medical applications still lag behind in terms of practical use. The field of oncological radiology (and neuro-oncology in particular) is at the forefront of these developments, now boosted by the success of Deep-Learning methods for the analysis of medical images. This paper reviews in detail some of the most recent advances in the use of Deep Learning in this field, from the broader topic of the development of Machine-Learning-based analytical pipelines to specific instantiations of the use of Deep Learning in neuro-oncology; the latter including its use in the groundbreaking field of ultra-low field magnetic resonance imaging.
Collapse
Affiliation(s)
- Carla Pitarch
- Department of Computer Science, Universitat Politècnica de Catalunya (UPC BarcelonaTech) and Intelligent Data Science and Artificial Intelligence (IDEAI-UPC) Research Center, 08034 Barcelona, Spain;
- Eurecat, Digital Health Unit, Technology Centre of Catalonia, 08005 Barcelona, Spain
| | - Gulnur Ungan
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (G.U.); (M.J.-S.)
- Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain
| | - Margarida Julià-Sapé
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (G.U.); (M.J.-S.)
- Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain
| | - Alfredo Vellido
- Department of Computer Science, Universitat Politècnica de Catalunya (UPC BarcelonaTech) and Intelligent Data Science and Artificial Intelligence (IDEAI-UPC) Research Center, 08034 Barcelona, Spain;
- Centro de Investigación Biomédica en Red (CIBER), 28029 Madrid, Spain
| |
Collapse
|
13
|
Jiang L, Huang S, Luo C, Zhang J, Chen W, Liu Z. An improved multi-scale gradient generative adversarial network for enhancing classification of colorectal cancer histological images. Front Oncol 2023; 13:1240645. [PMID: 38023227 PMCID: PMC10679330 DOI: 10.3389/fonc.2023.1240645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Deep learning-based solutions for histological image classification have gained attention in recent years due to their potential for objective evaluation of histological images. However, these methods often require a large number of expert annotations, which are both time-consuming and labor-intensive to obtain. Several scholars have proposed generative models to augment labeled data, but these often result in label uncertainty due to incomplete learning of the data distribution. Methods To alleviate these issues, a method called InceptionV3-SMSG-GAN has been proposed to enhance classification performance by generating high-quality images. Specifically, images synthesized by Multi-Scale Gradients Generative Adversarial Network (MSG-GAN) are selectively added to the training set through a selection mechanism utilizing a trained model to choose generated images with higher class probabilities. The selection mechanism filters the synthetic images that contain ambiguous category information, thus alleviating label uncertainty. Results Experimental results show that compared with the baseline method which uses InceptionV3, the proposed method can significantly improve the performance of pathological image classification from 86.87% to 89.54% for overall accuracy. Additionally, the quality of generated images is evaluated quantitatively using various commonly used evaluation metrics. Discussion The proposed InceptionV3-SMSG-GAN method exhibited good classification ability, where histological image could be divided into nine categories. Future work could focus on further refining the image generation and selection processes to optimize classification performance.
Collapse
Affiliation(s)
- Liwen Jiang
- Department of Pathology, Affiliated Cancer Hospital and Institution of Guangzhou Medical University, Guangzhou, China
| | - Shuting Huang
- School of Information Engineering, Guangdong University of Technology, Guangzhou, China
| | - Chaofan Luo
- School of Information Engineering, Guangdong University of Technology, Guangzhou, China
| | - Jiangyu Zhang
- Department of Pathology, Affiliated Cancer Hospital and Institution of Guangzhou Medical University, Guangzhou, China
| | - Wenjing Chen
- Department of Pathology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Zhenyu Liu
- School of Information Engineering, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
14
|
B. A, Kaur M, Singh D, Roy S, Amoon M. Efficient Skip Connections-Based Residual Network (ESRNet) for Brain Tumor Classification. Diagnostics (Basel) 2023; 13:3234. [PMID: 37892055 PMCID: PMC10606037 DOI: 10.3390/diagnostics13203234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Brain tumors pose a complex and urgent challenge in medical diagnostics, requiring precise and timely classification due to their diverse characteristics and potentially life-threatening consequences. While existing deep learning (DL)-based brain tumor classification (BTC) models have shown significant progress, they encounter limitations like restricted depth, vanishing gradient issues, and difficulties in capturing intricate features. To address these challenges, this paper proposes an efficient skip connections-based residual network (ESRNet). leveraging the residual network (ResNet) with skip connections. ESRNet ensures smooth gradient flow during training, mitigating the vanishing gradient problem. Additionally, the ESRNet architecture includes multiple stages with increasing numbers of residual blocks for improved feature learning and pattern recognition. ESRNet utilizes residual blocks from the ResNet architecture, featuring skip connections that enable identity mapping. Through direct addition of the input tensor to the convolutional layer output within each block, skip connections preserve the gradient flow. This mechanism prevents vanishing gradients, ensuring effective information propagation across network layers during training. Furthermore, ESRNet integrates efficient downsampling techniques and stabilizing batch normalization layers, which collectively contribute to its robust and reliable performance. Extensive experimental results reveal that ESRNet significantly outperforms other approaches in terms of accuracy, sensitivity, specificity, F-score, and Kappa statistics, with median values of 99.62%, 99.68%, 99.89%, 99.47%, and 99.42%, respectively. Moreover, the achieved minimum performance metrics, including accuracy (99.34%), sensitivity (99.47%), specificity (99.79%), F-score (99.04%), and Kappa statistics (99.21%), underscore the exceptional effectiveness of ESRNet for BTC. Therefore, the proposed ESRNet showcases exceptional performance and efficiency in BTC, holding the potential to revolutionize clinical diagnosis and treatment planning.
Collapse
Affiliation(s)
- Ashwini B.
- Department of ISE, NMAM Institute of Technology, Nitte (Deemed to be University), Nitte 574110, India;
| | - Manjit Kaur
- School of Computer Science and Artificial Intelligence, SR University, Warangal 506371, India
| | - Dilbag Singh
- Center of Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, USA;
- Research and Development Cell, Lovely Professional University, Phagwara 144411, India
| | - Satyabrata Roy
- Department of Computer Science and Engineering, Manipal University Jaipur, Jaipur 303007, India;
| | - Mohammed Amoon
- Department of Computer Science, Community College, King Saud University, P.O. Box 28095, Riyadh 11437, Saudi Arabia
| |
Collapse
|
15
|
Zheng Y, Huang D, Hao X, Wei J, Lu H, Liu Y. UniVisNet: A Unified Visualization and Classification Network for accurate grading of gliomas from MRI. Comput Biol Med 2023; 165:107332. [PMID: 37598632 DOI: 10.1016/j.compbiomed.2023.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Accurate grading of brain tumors plays a crucial role in the diagnosis and treatment of glioma. While convolutional neural networks (CNNs) have shown promising performance in this task, their clinical applicability is still constrained by the interpretability and robustness of the models. In the conventional framework, the classification model is trained first, and then visual explanations are generated. However, this approach often leads to models that prioritize classification performance or complexity, making it difficult to achieve a precise visual explanation. Motivated by these challenges, we propose the Unified Visualization and Classification Network (UniVisNet), a novel framework that aims to improve both the classification performance and the generation of high-resolution visual explanations. UniVisNet addresses attention misalignment by introducing a subregion-based attention mechanism, which replaces traditional down-sampling operations. Additionally, multiscale feature maps are fused to achieve higher resolution, enabling the generation of detailed visual explanations. To streamline the process, we introduce the Unified Visualization and Classification head (UniVisHead), which directly generates visual explanations without the need for additional separation steps. Through extensive experiments, our proposed UniVisNet consistently outperforms strong baseline classification models and prevalent visualization methods. Notably, UniVisNet achieves remarkable results on the glioma grading task, including an AUC of 94.7%, an accuracy of 89.3%, a sensitivity of 90.4%, and a specificity of 85.3%. Moreover, UniVisNet provides visually interpretable explanations that surpass existing approaches. In conclusion, UniVisNet innovatively generates visual explanations in brain tumor grading by simultaneously improving the classification performance and generating high-resolution visual explanations. This work contributes to the clinical application of deep learning, empowering clinicians with comprehensive insights into the spatial heterogeneity of glioma.
Collapse
Affiliation(s)
- Yao Zheng
- Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China
| | - Dong Huang
- Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China; Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China
| | - Xiaoshuo Hao
- Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China
| | - Jie Wei
- Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China
| | - Hongbing Lu
- Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China; Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China.
| | - Yang Liu
- Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China; Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, No. 169 Changle West Road, Xi'an, 710032, ShaanXi, China.
| |
Collapse
|
16
|
Rasheed Z, Ma YK, Ullah I, Ghadi YY, Khan MZ, Khan MA, Abdusalomov A, Alqahtani F, Shehata AM. Brain Tumor Classification from MRI Using Image Enhancement and Convolutional Neural Network Techniques. Brain Sci 2023; 13:1320. [PMID: 37759920 PMCID: PMC10526310 DOI: 10.3390/brainsci13091320] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The independent detection and classification of brain malignancies using magnetic resonance imaging (MRI) can present challenges and the potential for error due to the intricate nature and time-consuming process involved. The complexity of the brain tumor identification process primarily stems from the need for a comprehensive evaluation spanning multiple modules. The advancement of deep learning (DL) has facilitated the emergence of automated medical image processing and diagnostics solutions, thereby offering a potential resolution to this issue. Convolutional neural networks (CNNs) represent a prominent methodology in visual learning and image categorization. The present study introduces a novel methodology integrating image enhancement techniques, specifically, Gaussian-blur-based sharpening and Adaptive Histogram Equalization using CLAHE, with the proposed model. This approach aims to effectively classify different categories of brain tumors, including glioma, meningioma, and pituitary tumor, as well as cases without tumors. The algorithm underwent comprehensive testing using benchmarked data from the published literature, and the results were compared with pre-trained models, including VGG16, ResNet50, VGG19, InceptionV3, and MobileNetV2. The experimental findings of the proposed method demonstrated a noteworthy classification accuracy of 97.84%, a precision success rate of 97.85%, a recall rate of 97.85%, and an F1-score of 97.90%. The results presented in this study showcase the exceptional accuracy of the proposed methodology in accurately classifying the most commonly occurring brain tumor types. The technique exhibited commendable generalization properties, rendering it a valuable asset in medicine for aiding physicians in making precise and proficient brain diagnoses.
Collapse
Affiliation(s)
- Zahid Rasheed
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yong-Kui Ma
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Inam Ullah
- Department of Computer Engineering, Gachon University, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Yazeed Yasin Ghadi
- Department of Computer Science, Al Ain University, Abu Dhabi P.O. Box 112612, United Arab Emirates
| | - Muhammad Zubair Khan
- Faculty of Basic Sciences, Balochistan University of Information Technology Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Muhammad Abbas Khan
- Department of Electrical Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Akmalbek Abdusalomov
- Department of Artificial Intelligence, Tashkent State University of Economics, Tashkent 100066, Uzbekistan;
| | - Fayez Alqahtani
- Software Engineering Department, College of Computer and Information Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Ahmed M. Shehata
- Computer Science and Engineering Department, Faculty of Electronic Engineering, Menoufia University, Menofia 32511, Egypt
| |
Collapse
|
17
|
Asiri AA, Shaf A, Ali T, Shakeel U, Irfan M, Mehdar KM, Halawani HT, Alghamdi AH, Alshamrani AFA, Alqhtani SM. Exploring the Power of Deep Learning: Fine-Tuned Vision Transformer for Accurate and Efficient Brain Tumor Detection in MRI Scans. Diagnostics (Basel) 2023; 13:2094. [PMID: 37370989 DOI: 10.3390/diagnostics13122094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
A brain tumor is a significant health concern that directly or indirectly affects thousands of people worldwide. The early and accurate detection of brain tumors is vital to the successful treatment of brain tumors and the improved quality of life of the patient. There are several imaging techniques used for brain tumor detection. Among these techniques, the most common are MRI and CT scans. To overcome the limitations associated with these traditional techniques, computer-aided analysis of brain images has gained attention in recent years as a promising approach for accurate and reliable brain tumor detection. In this study, we proposed a fine-tuned vision transformer model that uses advanced image processing and deep learning techniques to accurately identify the presence of brain tumors in the input data images. The proposed model FT-ViT involves several stages, including the processing of data, patch processing, concatenation, feature selection and learning, and fine tuning. Upon training the model on the CE-MRI dataset containing 5712 brain tumor images, the model could accurately identify the tumors. The FT-Vit model achieved an accuracy of 98.13%. The proposed method offers high accuracy and can significantly reduce the workload of radiologists, making it a practical approach in medical science. However, further research can be conducted to diagnose more complex and rare types of tumors with more accuracy and reliability.
Collapse
Affiliation(s)
- Abdullah A Asiri
- Radiological Sciences Department, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmad Shaf
- Department of Computer Science, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan
| | - Tariq Ali
- Department of Computer Science, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan
| | - Unza Shakeel
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | - Khlood M Mehdar
- Anatomy Department, Medicine College, Najran University, Najran 61441, Saudi Arabia
| | - Hanan Talal Halawani
- Computer Science Department, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia
| | - Ali H Alghamdi
- Department of Radiological Sciences, Faculty of Applied Medical Sciences, The University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Abdullah Fahad A Alshamrani
- Department of Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Madinah 41477, Saudi Arabia
| | - Samar M Alqhtani
- Department of Information Systems, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia
| |
Collapse
|
18
|
Muezzinoglu T, Baygin N, Tuncer I, Barua PD, Baygin M, Dogan S, Tuncer T, Palmer EE, Cheong KH, Acharya UR. PatchResNet: Multiple Patch Division-Based Deep Feature Fusion Framework for Brain Tumor Classification Using MRI Images. J Digit Imaging 2023; 36:973-987. [PMID: 36797543 PMCID: PMC10287865 DOI: 10.1007/s10278-023-00789-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Modern computer vision algorithms are based on convolutional neural networks (CNNs), and both end-to-end learning and transfer learning modes have been used with CNN for image classification. Thus, automated brain tumor classification models have been proposed by deploying CNNs to help medical professionals. Our primary objective is to increase the classification performance using CNN. Therefore, a patch-based deep feature engineering model has been proposed in this work. Nowadays, patch division techniques have been used to attain high classification performance, and variable-sized patches have achieved good results. In this work, we have used three types of patches of different sizes (32 × 32, 56 × 56, 112 × 112). Six feature vectors have been obtained using these patches and two layers of the pretrained ResNet50 (global average pooling and fully connected layers). In the feature selection phase, three selectors-neighborhood component analysis (NCA), Chi2, and ReliefF-have been used, and 18 final feature vectors have been obtained. By deploying k nearest neighbors (kNN), 18 results have been calculated. Iterative hard majority voting (IHMV) has been applied to compute the general classification accuracy of this framework. This model uses different patches, feature extractors (two layers of the ResNet50 have been utilized as feature extractors), and selectors, making this a framework that we have named PatchResNet. A public brain image dataset containing four classes (glioblastoma multiforme (GBM), meningioma, pituitary tumor, healthy) has been used to develop the proposed PatchResNet model. Our proposed PatchResNet attained 98.10% classification accuracy using the public brain tumor image dataset. The developed PatchResNet model obtained high classification accuracy and has the advantage of being a self-organized framework. Therefore, the proposed method can choose the best result validation prediction vectors and achieve high image classification performance.
Collapse
Affiliation(s)
- Taha Muezzinoglu
- Department of Computer Engineering, Faculty of Engineering, Munzur University, Tunceli, Turkey
| | - Nursena Baygin
- Department of Computer Engineering, Faculty of Engineering, Erzurum Technical University, Erzurum, Turkey
| | | | - Prabal Datta Barua
- School of Management & Enterprise, University of Southern Queensland, Toowoomba, Australia
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, Australia
| | - Mehmet Baygin
- Department of Computer Engineering, Faculty of Engineering, Ardahan University, Ardahan, Turkey
| | - Sengul Dogan
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey
| | - Turker Tuncer
- Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey
| | - Elizabeth Emma Palmer
- Centre of Clinical Genetics, Sydney Children’s Hospitals Network, Randwick, 2031 Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, 2031 Australia
| | - Kang Hao Cheong
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, Singapore, S487372 Singapore
| | - U. Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore, 599489 Singapore
- Department of Biomedical Engineering, School of Science and Technology, SUSS University, Singapore, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
19
|
Csore J, Karmonik C, Wilhoit K, Buckner L, Roy TL. Automatic Classification of Magnetic Resonance Histology of Peripheral Arterial Chronic Total Occlusions Using a Variational Autoencoder: A Feasibility Study. Diagnostics (Basel) 2023; 13:diagnostics13111925. [PMID: 37296778 DOI: 10.3390/diagnostics13111925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The novel approach of our study consists in adapting and in evaluating a custom-made variational autoencoder (VAE) using two-dimensional (2D) convolutional neural networks (CNNs) on magnetic resonance imaging (MRI) images for differentiate soft vs. hard plaque components in peripheral arterial disease (PAD). Five amputated lower extremities were imaged at a clinical ultra-high field 7 Tesla MRI. Ultrashort echo time (UTE), T1-weighted (T1w) and T2-weighted (T2w) datasets were acquired. Multiplanar reconstruction (MPR) images were obtained from one lesion per limb. Images were aligned to each other and pseudo-color red-green-blue images were created. Four areas in latent space were defined corresponding to the sorted images reconstructed by the VAE. Images were classified from their position in latent space and scored using tissue score (TS) as following: (1) lumen patent, TS:0; (2) partially patent, TS:1; (3) mostly occluded with soft tissue, TS:3; (4) mostly occluded with hard tissue, TS:5. Average and relative percentage of TS was calculated per lesion defined as the sum of the tissue score for each image divided by the total number of images. In total, 2390 MPR reconstructed images were included in the analysis. Relative percentage of average tissue score varied from only patent (lesion #1) to presence of all four classes. Lesions #2, #3 and #5 were classified to contain tissues except mostly occluded with hard tissue while lesion #4 contained all (ranges (I): 0.2-100%, (II): 46.3-75.9%, (III): 18-33.5%, (IV): 20%). Training the VAE was successful as images with soft/hard tissues in PAD lesions were satisfactory separated in latent space. Using VAE may assist in rapid classification of MRI histology images acquired in a clinical setup for facilitating endovascular procedures.
Collapse
Affiliation(s)
- Judit Csore
- DeBakey Heart and Vascular Center, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX 77030, USA
- Heart and Vascular Center, Semmelweis University, 68 Városmajor Street, 1122 Budapest, Hungary
| | - Christof Karmonik
- MRI Core, Translational Imaging Center, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, 77030 TX, USA
| | - Kayla Wilhoit
- MRI Core, Translational Imaging Center, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, 77030 TX, USA
| | - Lily Buckner
- MRI Core, Translational Imaging Center, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, 77030 TX, USA
| | - Trisha L Roy
- DeBakey Heart and Vascular Center, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
20
|
Sistaninejhad B, Rasi H, Nayeri P. A Review Paper about Deep Learning for Medical Image Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:7091301. [PMID: 37284172 PMCID: PMC10241570 DOI: 10.1155/2023/7091301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/12/2023] [Accepted: 04/21/2023] [Indexed: 06/08/2023]
Abstract
Medical imaging refers to the process of obtaining images of internal organs for therapeutic purposes such as discovering or studying diseases. The primary objective of medical image analysis is to improve the efficacy of clinical research and treatment options. Deep learning has revamped medical image analysis, yielding excellent results in image processing tasks such as registration, segmentation, feature extraction, and classification. The prime motivations for this are the availability of computational resources and the resurgence of deep convolutional neural networks. Deep learning techniques are good at observing hidden patterns in images and supporting clinicians in achieving diagnostic perfection. It has proven to be the most effective method for organ segmentation, cancer detection, disease categorization, and computer-assisted diagnosis. Many deep learning approaches have been published to analyze medical images for various diagnostic purposes. In this paper, we review the work exploiting current state-of-the-art deep learning approaches in medical image processing. We begin the survey by providing a synopsis of research works in medical imaging based on convolutional neural networks. Second, we discuss popular pretrained models and general adversarial networks that aid in improving convolutional networks' performance. Finally, to ease direct evaluation, we compile the performance metrics of deep learning models focusing on COVID-19 detection and child bone age prediction.
Collapse
Affiliation(s)
| | - Habib Rasi
- Sahand University of Technology, East Azerbaijan, New City of Sahand, Iran
| | - Parisa Nayeri
- Khoy University of Medical Sciences, West Azerbaijan, Khoy, Iran
| |
Collapse
|
21
|
Kebaili A, Lapuyade-Lahorgue J, Ruan S. Deep Learning Approaches for Data Augmentation in Medical Imaging: A Review. J Imaging 2023; 9:81. [PMID: 37103232 PMCID: PMC10144738 DOI: 10.3390/jimaging9040081] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Deep learning has become a popular tool for medical image analysis, but the limited availability of training data remains a major challenge, particularly in the medical field where data acquisition can be costly and subject to privacy regulations. Data augmentation techniques offer a solution by artificially increasing the number of training samples, but these techniques often produce limited and unconvincing results. To address this issue, a growing number of studies have proposed the use of deep generative models to generate more realistic and diverse data that conform to the true distribution of the data. In this review, we focus on three types of deep generative models for medical image augmentation: variational autoencoders, generative adversarial networks, and diffusion models. We provide an overview of the current state of the art in each of these models and discuss their potential for use in different downstream tasks in medical imaging, including classification, segmentation, and cross-modal translation. We also evaluate the strengths and limitations of each model and suggest directions for future research in this field. Our goal is to provide a comprehensive review about the use of deep generative models for medical image augmentation and to highlight the potential of these models for improving the performance of deep learning algorithms in medical image analysis.
Collapse
Affiliation(s)
| | | | - Su Ruan
- Université Rouen Normandie, INSA Rouen Normandie, Université Le Havre Normandie, Normandie Univ, LITIS UR 4108, F-76000 Rouen, France
| |
Collapse
|
22
|
Ranjbarzadeh R, Caputo A, Tirkolaee EB, Jafarzadeh Ghoushchi S, Bendechache M. Brain tumor segmentation of MRI images: A comprehensive review on the application of artificial intelligence tools. Comput Biol Med 2023; 152:106405. [PMID: 36512875 DOI: 10.1016/j.compbiomed.2022.106405] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/06/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Brain cancer is a destructive and life-threatening disease that imposes immense negative effects on patients' lives. Therefore, the detection of brain tumors at an early stage improves the impact of treatments and increases the patients survival rates. However, detecting brain tumors in their initial stages is a demanding task and an unmet need. METHODS The present study presents a comprehensive review of the recent Artificial Intelligence (AI) methods of diagnosing brain tumors using MRI images. These AI techniques can be divided into Supervised, Unsupervised, and Deep Learning (DL) methods. RESULTS Diagnosing and segmenting brain tumors usually begin with Magnetic Resonance Imaging (MRI) on the brain since MRI is a noninvasive imaging technique. Another existing challenge is that the growth of technology is faster than the rate of increase in the number of medical staff who can employ these technologies. It has resulted in an increased risk of diagnostic misinterpretation. Therefore, developing robust automated brain tumor detection techniques has been studied widely over the past years. CONCLUSION The current review provides an analysis of the performance of modern methods in this area. Moreover, various image segmentation methods in addition to the recent efforts of researchers are summarized. Finally, the paper discusses open questions and suggests directions for future research.
Collapse
Affiliation(s)
- Ramin Ranjbarzadeh
- School of Computing, Faculty of Engineering and Computing, Dublin City University, Ireland.
| | - Annalina Caputo
- School of Computing, Faculty of Engineering and Computing, Dublin City University, Ireland.
| | | | | | - Malika Bendechache
- Lero & ADAPT Research Centres, School of Computer Science, University of Galway, Ireland.
| |
Collapse
|
23
|
Yadav AS, Kumar S, Karetla GR, Cotrina-Aliaga JC, Arias-Gonzáles JL, Kumar V, Srivastava S, Gupta R, Ibrahim S, Paul R, Naik N, Singla B, Tatkar NS. A Feature Extraction Using Probabilistic Neural Network and BTFSC-Net Model with Deep Learning for Brain Tumor Classification. J Imaging 2022; 9:jimaging9010010. [PMID: 36662108 PMCID: PMC9865827 DOI: 10.3390/jimaging9010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Brain Tumor Fusion-based Segments and Classification-Non-enhancing tumor (BTFSC-Net) is a hybrid system for classifying brain tumors that combine medical image fusion, segmentation, feature extraction, and classification procedures. MATERIALS AND METHODS to reduce noise from medical images, the hybrid probabilistic wiener filter (HPWF) is first applied as a preprocessing step. Then, to combine robust edge analysis (REA) properties in magnetic resonance imaging (MRI) and computed tomography (CT) medical images, a fusion network based on deep learning convolutional neural networks (DLCNN) is developed. Here, the brain images' slopes and borders are detected using REA. To separate the sick region from the color image, adaptive fuzzy c-means integrated k-means (HFCMIK) clustering is then implemented. To extract hybrid features from the fused image, low-level features based on the redundant discrete wavelet transform (RDWT), empirical color features, and texture characteristics based on the gray-level cooccurrence matrix (GLCM) are also used. Finally, to distinguish between benign and malignant tumors, a deep learning probabilistic neural network (DLPNN) is deployed. RESULTS according to the findings, the suggested BTFSC-Net model performed better than more traditional preprocessing, fusion, segmentation, and classification techniques. Additionally, 99.21% segmentation accuracy and 99.46% classification accuracy were reached using the proposed BTFSC-Net model. CONCLUSIONS earlier approaches have not performed as well as our presented method for image fusion, segmentation, feature extraction, classification operations, and brain tumor classification. These results illustrate that the designed approach performed more effectively in terms of enhanced quantitative evaluation with better accuracy as well as visual performance.
Collapse
Affiliation(s)
- Arun Singh Yadav
- Department of Computer Science, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Surendra Kumar
- Department of Computer Application, Marwadi University, Rajkot 360003, Gujrat, India
| | - Girija Rani Karetla
- School of Computer, Data and Mathematical Sciences, Western Sydney University, Penrith, NSW 2751, Australia
| | | | - José Luis Arias-Gonzáles
- Department of Business, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, San Miguel 15088, Peru
| | - Vinod Kumar
- Department of Computer Applications, ABES Engineering College, Ghaziabad 201009, Uttar Pradesh, India
| | - Satyajee Srivastava
- Department of Computer Science and Engineering, University of Engineering and Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Reena Gupta
- Department of Pharmacognosy, Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sufyan Ibrahim
- Neuro-Informatics Laboratory, Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Rahul Paul
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
- iTRUE (International Training and Research in Uro-Oncology and Endourology) Group, Manipal 576104, Karnataka, India
| | - Nithesh Naik
- iTRUE (International Training and Research in Uro-Oncology and Endourology) Group, Manipal 576104, Karnataka, India
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Curiouz TechLab Private Limited, BIRAC-BioNEST, Manipal Government of Karnataka Bioincubator, Manipal 576104, Karnataka, India
- Correspondence: ; Tel.: +91-83-1087-4339
| | - Babita Singla
- Chitkara Business School, Chitkara University, Chandigarh 140401, Punjab, India
| | - Nisha S. Tatkar
- Department of Postgraduate Diploma in Management, Institute of PGDM, Mumbai Education Trust, Mumbai 400050, Maharashtra, India
| |
Collapse
|
24
|
Ramprasad MVS, Rahman MZU, Bayleyegn MD. A Deep Probabilistic Sensing and Learning Model for Brain Tumor Classification With Fusion-Net and HFCMIK Segmentation. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2022; 3:178-188. [PMID: 36712319 PMCID: PMC9870266 DOI: 10.1109/ojemb.2022.3217186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Goal: Implementation of an artificial intelli gence-based medical diagnosis tool for brain tumor classification, which is called the BTFSC-Net. Methods: Medical images are preprocessed using a hybrid probabilistic wiener filter (HPWF) The deep learning convolutional neural network (DLCNN) was utilized to fuse MRI and CT images with robust edge analysis (REA) properties, which are used to identify the slopes and edges of source images. Then, hybrid fuzzy c-means integrated k-means (HFCMIK) clustering is used to segment the disease affected region from the fused image. Further, hybrid features such as texture, colour, and low-level features are extracted from the fused image by using gray-level cooccurrence matrix (GLCM), redundant discrete wavelet transform (RDWT) descriptors. Finally, a deep learning based probabilistic neural network (DLPNN) is used to classify malignant and benign tumors. The BTFSC-Net attained 99.21% of segmentation accuracy and 99.46% of classification accuracy. Conclusions: The simulations showed that BTFSC-Net outperformed as compared to existing methods.
Collapse
Affiliation(s)
- M V S Ramprasad
- Koneru Lakshmaiah Education FoundationK L University Guntur 522302 India
- GITAM (Deemed to be University) Visakhapatnam AP 522502 India
| | - Md Zia Ur Rahman
- Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education FoundationK L University Vaddeswaram Guntur 522502 India
| | | |
Collapse
|
25
|
Intasuwan P, Malatong Y, Palee P, Sinthubua A, Mahakkanukrauh P. Applying general adversarial networks in convolutional neural networks of the 2D whole os coxae image classification for sex estimation in a Thai population. AUST J FORENSIC SCI 2022. [DOI: 10.1080/00450618.2022.2131909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pittayarat Intasuwan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Yanumart Malatong
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patison Palee
- College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, Thailand
| | - Apichat Sinthubua
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pasuk Mahakkanukrauh
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellence Center in Osteology Research and Training Center (ORTC), Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
26
|
Tummala S, Kadry S, Bukhari SAC, Rauf HT. Classification of Brain Tumor from Magnetic Resonance Imaging Using Vision Transformers Ensembling. Curr Oncol 2022; 29:7498-7511. [PMID: 36290867 PMCID: PMC9600395 DOI: 10.3390/curroncol29100590] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 01/13/2023] Open
Abstract
The automated classification of brain tumors plays an important role in supporting radiologists in decision making. Recently, vision transformer (ViT)-based deep neural network architectures have gained attention in the computer vision research domain owing to the tremendous success of transformer models in natural language processing. Hence, in this study, the ability of an ensemble of standard ViT models for the diagnosis of brain tumors from T1-weighted (T1w) magnetic resonance imaging (MRI) is investigated. Pretrained and finetuned ViT models (B/16, B/32, L/16, and L/32) on ImageNet were adopted for the classification task. A brain tumor dataset from figshare, consisting of 3064 T1w contrast-enhanced (CE) MRI slices with meningiomas, gliomas, and pituitary tumors, was used for the cross-validation and testing of the ensemble ViT model's ability to perform a three-class classification task. The best individual model was L/32, with an overall test accuracy of 98.2% at 384 × 384 resolution. The ensemble of all four ViT models demonstrated an overall testing accuracy of 98.7% at the same resolution, outperforming individual model's ability at both resolutions and their ensembling at 224 × 224 resolution. In conclusion, an ensemble of ViT models could be deployed for the computer-aided diagnosis of brain tumors based on T1w CE MRI, leading to radiologist relief.
Collapse
Affiliation(s)
- Sudhakar Tummala
- Department of Electronics and Communication Engineering, School of Engineering and Sciences, SRM University—AP, Amaravati 522503, India
| | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, 4612 Kristiansand, Norway
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos P.O. Box 36, Lebanon
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman 346, United Arab Emirates
| | - Syed Ahmad Chan Bukhari
- Division of Computer Science, Mathematics and Science, Collins College of Professional Studies, St. John’s University, New York, NY 11439, USA
| | - Hafiz Tayyab Rauf
- Centre for Smart Systems, AI and Cybersecurity, Staffordshire University, Stoke-on-Trent ST4 2DE, UK
| |
Collapse
|