1
|
Song X, Li Z, Wang X, Du H, Jia Y, Chen S, Xiong A, Li W, Li X, Cheng L, Zhao C, Wang L, Gao G, Chen X, Wu C, Zhao Z, Ren S, Zhou C, Wu F. SLC40A1 + macrophages contribute to the immunosuppressive tumor microenvironment in EGFR-mutated lung cancer. Sci Bull (Beijing) 2025; 70:47-50. [PMID: 39580243 DOI: 10.1016/j.scib.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/20/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024]
Affiliation(s)
- Xinyu Song
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan 250012, China; Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Zongjuan Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Xuanhe Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - He Du
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yijun Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Shen Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Anwen Xiong
- Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Wei Li
- Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Lei Cheng
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Lei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Guanghui Gao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Zhikai Zhao
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| |
Collapse
|
2
|
MODI SHAILRAKESH, ANDEY TERRICK. Piperlongumine in combination with EGFR tyrosine kinase inhibitors for the treatment of lung cancer cells. Oncol Res 2024; 32:1709-1721. [PMID: 39449797 PMCID: PMC11497197 DOI: 10.32604/or.2024.053972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/09/2024] [Indexed: 10/26/2024] Open
Abstract
Objectives EGFR tyrosine kinase inhibitor (EGFR-TKI) therapies such as erlotinib and gefitinib are approved for the treatment of non-small cell lung cancer (NSCLC). However, the high incidence of acquired resistance to these EGFR-TKIs may preclude their effectiveness. Piperlongumine (PPL), an extract from the long pepper fruit (Piper longum), has been shown to possess anticancer properties. The purpose of the study was to investigate piperlongumine as an anticancer agent and to study a combination treatment approach with EGFR-TKIs against lung cancer cells. Methods Anticancer efficacy of PPL, erlotinib (ERL), gefitinib (GEF), and cisplatin (CIS) were investigated in H1299 and H1975 cell lines. Cells were treated with PPL, ERL, GEF, and CIS alone, and in combination, cell viability was determined after 72 h. The mechanism of PPL-induced cytotoxicity was investigated via reactive oxygen species (ROS) induction, and apoptosis induction using acridine orange/ethidium bromide staining and flow cytometry. The effect of treatment on EGFR-mediated oncogenic signaling was investigated by immunoblotting for mitogenic and apoptotic markers. Results PPL exhibited a potent cytotoxic effect in H1299 and H1975 cells compared to ERL, GEF, and CIS. Combination treatments of PPL with GEF and ERL showed significant reductions in cancer cells compared to control in both cell lines, which were associated with apoptotic induction, but without significant ROS induction. Compared to control, PPL with GEF significantly increased apoptotic cell death in H1975as confirmed with flow cytometry. Treatment with PPL alone and in combination induced anti-mitogenic and apoptotic responses at the molecular level. Conclusion PPL sensitized lung cancer cells to EGFR-TKI and induced potent cytotoxic effects at low concentrations.
Collapse
Affiliation(s)
- SHAIL RAKESH MODI
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Worcester, MA 01608, USA
| | - TERRICK ANDEY
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Worcester, MA 01608, USA
| |
Collapse
|
3
|
Izumi M, Costa DB, Kobayashi SS. Targeting of drug-tolerant persister cells as an approach to counter drug resistance in non-small cell lung cancer. Lung Cancer 2024; 194:107885. [PMID: 39002493 PMCID: PMC11305904 DOI: 10.1016/j.lungcan.2024.107885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The advent of targeted therapies revolutionized treatments of advanced oncogene-driven non-small cell lung cancer (NSCLC). Nonetheless, despite initial dramatic responses, development of drug resistance is inevitable. Although mechanisms underlying acquired resistance, such as on-target mutations, bypass pathways, or lineage transformation, have been described, overcoming drug resistance remains challenging. Recent evidence suggests that drug-tolerant persister (DTP) cells, which are tumor cells tolerant to initial drug exposure, give rise to cells that acquire drug resistance. Thus, the possibility of eradicating cancer by targeting DTP cells is under investigation, and various strategies are proposed. Here, we review overall features of DTP cells, current efforts to define DTP markers, and potential therapeutic strategies to target and eradicate DTP cells in oncogene-driven NSCLC. We also discuss future challenges in the field.
Collapse
Affiliation(s)
- Motohiro Izumi
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel B Costa
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Susumu S Kobayashi
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Jang TH, Lin SC, Yang YY, Lay JD, Chang CL, Yao CJ, Huang JS, Chuang SE. The Role of AKR1B10 in Lung Cancer Malignancy Induced by Sublethal Doses of Chemotherapeutic Drugs. Cancers (Basel) 2024; 16:2428. [PMID: 39001490 PMCID: PMC11240762 DOI: 10.3390/cancers16132428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Chemotherapy remains a cornerstone in lung cancer treatment, yet emerging evidence suggests that sublethal low doses may inadvertently enhance the malignancy. This study investigates the paradoxical effects of sublethal low-dose chemotherapy on non-small-cell lung cancer (NSCLC) cells, emphasizing the role of Aldo-keto reductase family 1 member B10 (AKR1B10). We found that sublethal doses of chemotherapy unexpectedly increased cancer cell migration approximately 2-fold and invasion approximately threefold, potentially promoting metastasis. Our analysis revealed a significant upregulation of AKR1B10 in response to taxol and doxorubicin treatment, correlating with poor survival rates in lung cancer patients. Furthermore, silencing AKR1B10 resulted in a 1-2-fold reduction in cell proliferation and a 2-3-fold reduction in colony formation and migration while increasing chemotherapy sensitivity. In contrast, the overexpression of AKR1B10 stimulated growth rate by approximately 2-fold via ERK pathway activation, underscoring its potential as a target for therapeutic intervention. The reversal of these effects upon the application of an ERK-specific inhibitor further validates the significance of the ERK pathway in AKR1B10-mediated chemoresistance. In conclusion, our findings significantly contribute to the understanding of chemotherapy-induced adaptations in lung cancer cells. The elevated AKR1B10 expression following sublethal chemotherapy presents a novel molecular mechanism contributing to the development of chemoresistance. It highlights the need for strategic approaches in chemotherapy administration to circumvent the inadvertent enhancement of cancer aggressiveness. This study positions AKR1B10 as a potential therapeutic target, offering a new avenue to improve lung cancer treatment outcomes by mitigating the adverse effects of sublethal chemotherapy.
Collapse
Affiliation(s)
- Te-Hsuan Jang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Sheng-Chieh Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Ya-Yu Yang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Jong-Ding Lay
- Department of Nursing, National Taichung University of Science and Technology, Taichung 40343, Taiwan
| | - Chih-Ling Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chih-Jung Yao
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Jhy-Shrian Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan
| | - Shuang-En Chuang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| |
Collapse
|
5
|
La Monica S, Vacondio F, Eltayeb K, Lodola A, Volta F, Viglioli M, Ferlenghi F, Galvani F, Galetti M, Bonelli M, Fumarola C, Cavazzoni A, Flammini L, Verzè M, Minari R, Petronini PG, Tiseo M, Mor M, Alfieri R. Targeting glucosylceramide synthase induces antiproliferative and proapoptotic effects in osimertinib-resistant NSCLC cell models. Sci Rep 2024; 14:6491. [PMID: 38499619 PMCID: PMC10948837 DOI: 10.1038/s41598-024-57028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
The EGFR tyrosine kinase inhibitor osimertinib has been approved for the first-line treatment of EGFR-mutated Non-Small Cell Lung Cancer (NSCLC) patients. Despite its efficacy, patients develop resistance. Mechanisms of resistance are heterogeneous and not fully understood, and their characterization is essential to find new strategies to overcome resistance. Ceramides are well-known regulators of apoptosis and are converted into glucosylceramides (GlcCer) by glucosylceramide synthase (GCS). A higher content of GlcCers was observed in lung pleural effusions from NSCLC patients and their role in osimertinib-resistance has not been documented. The aim of this study was to determine the therapeutic potential of inhibiting GCS in NSCLC EGFR-mutant models resistant to osimertinib in vitro and in vivo. Lipidomic analysis showed a significant increase in the intracellular levels of glycosylceramides, including GlcCers in osimertinib resistant clones compared to sensitive cells. In resistant cells, the GCS inhibitor PDMP caused cell cycle arrest, inhibition of 2D and 3D cell proliferation, colony formation and migration capability, and apoptosis induction. The intratumoral injection of PDMP completely suppressed the growth of OR xenograft models. This study demonstrated that dysregulation of ceramide metabolism is involved in osimertinib-resistance and targeting GCS may be a promising therapeutic strategy for patients progressed to osimertinib.
Collapse
Affiliation(s)
- Silvia La Monica
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Federica Vacondio
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Kamal Eltayeb
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Francesco Volta
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Martina Viglioli
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | | | - Francesca Galvani
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL-Italian Workers' Compensation Authority, 00078, Monte Porzio Catone, Rome, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Lisa Flammini
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Michela Verzè
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
| | | | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy.
| | - Marco Mor
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| |
Collapse
|
6
|
Peña KB, Riu F, Hernandez A, Guilarte C, Elizalde-Horcada M, Parada D. Study of Liquid-Based Cytology Using Next-Generation Sequencing as a Liquid Biopsy Application in Patients with Advanced Oncological Disease. Biomedicines 2023; 11:1578. [PMID: 37371673 DOI: 10.3390/biomedicines11061578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
In patients with advanced cancer, it is necessary to detect driver mutations and genetic arrangements. If a mutation is found, targeted therapy may become an option. However, in most patients with advanced cancer, obtaining material can be challenging, and these determinations must be made based on small biopsies or cytologic samples. We analyzed the ability of liquid-based cytology to determine the mutational status in patients with advanced cancer by next-generation sequencing. We studied cytologic samples from 28 patients between 1 January 2018 and 31 December 2022. All samples were processed by next-generation sequencing using the Oncomine® Precision and Comprehensive Assay Panels for Solid Tumors. Eleven male and 17 female patients with a median age of 63.75 years were included. Clinical stage IV was predominant in 21 patients. Eleven patients died, and 17 survived. The DNA and RNA concentrations were 10.53 ng/µL and 13 ng/µL, respectively. Eleven patients showed actionable mutations, and 17 showed other genomic alterations. Liquid-based cytology can be used as a component of liquid biopsy, as it allows the identification of actionable mutations in patients with advanced oncological disease. Our findings expand the utility of liquid biopsy from different body fluids or cell aspirates.
Collapse
Affiliation(s)
- Karla Beatríz Peña
- Molecular Pathology Unit, Department of Pathology, Hospital Universitari de Sant Joan, 43202 Reus, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, 43202 Reus, Tarragona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43002 Reus, Tarragona, Spain
| | - Francesc Riu
- Molecular Pathology Unit, Department of Pathology, Hospital Universitari de Sant Joan, 43202 Reus, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, 43202 Reus, Tarragona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43002 Reus, Tarragona, Spain
| | - Anna Hernandez
- Molecular Pathology Unit, Department of Pathology, Hospital Universitari de Sant Joan, 43202 Reus, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, 43202 Reus, Tarragona, Spain
| | - Carmen Guilarte
- Molecular Pathology Unit, Department of Pathology, Hospital Universitari de Sant Joan, 43202 Reus, Tarragona, Spain
| | | | - David Parada
- Molecular Pathology Unit, Department of Pathology, Hospital Universitari de Sant Joan, 43202 Reus, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili, 43202 Reus, Tarragona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43002 Reus, Tarragona, Spain
| |
Collapse
|
7
|
Shi ZD, Pang K, Wu ZX, Dong Y, Hao L, Qin JX, Wang W, Chen ZS, Han CH. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduct Target Ther 2023; 8:113. [PMID: 36906600 PMCID: PMC10008648 DOI: 10.1038/s41392-023-01383-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/07/2022] [Accepted: 02/20/2023] [Indexed: 03/13/2023] Open
Abstract
Despite the success of targeted therapies in cancer treatment, therapy-induced resistance remains a major obstacle to a complete cure. Tumor cells evade treatments and relapse via phenotypic switching driven by intrinsic or induced cell plasticity. Several reversible mechanisms have been proposed to circumvent tumor cell plasticity, including epigenetic modifications, regulation of transcription factors, activation or suppression of key signaling pathways, as well as modification of the tumor environment. Epithelial-to-mesenchymal transition, tumor cell and cancer stem cell formation also serve as roads towards tumor cell plasticity. Corresponding treatment strategies have recently been developed that either target plasticity-related mechanisms or employ combination treatments. In this review, we delineate the formation of tumor cell plasticity and its manipulation of tumor evasion from targeted therapy. We discuss the non-genetic mechanisms of targeted drug-induced tumor cell plasticity in various types of tumors and provide insights into the contribution of tumor cell plasticity to acquired drug resistance. New therapeutic strategies such as inhibition or reversal of tumor cell plasticity are also presented. We also discuss the multitude of clinical trials that are ongoing worldwide with the intention of improving clinical outcomes. These advances provide a direction for developing novel therapeutic strategies and combination therapy regimens that target tumor cell plasticity.
Collapse
Affiliation(s)
- Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.,School of Life Sciences, Jiangsu Normal University, Jiangsu, China.,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jia-Xin Qin
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Wei Wang
- Department of Medical College, Southeast University, Nanjing, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China. .,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China. .,School of Life Sciences, Jiangsu Normal University, Jiangsu, China. .,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| |
Collapse
|
8
|
Wang F, Du H, Li B, Luo Z, Zhu L. Unlocking phenotypic plasticity provides novel insights for immunity and personalized therapy in lung adenocarcinoma. Front Genet 2022; 13:941567. [PMID: 36147496 PMCID: PMC9486167 DOI: 10.3389/fgene.2022.941567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Unlocking phenotype plasticity (UPP) has been shown to have an essential role in the mechanism of tumor development and therapeutic response. However, the clinical significance of unlocking phenotypic plasticity in patients with lung adenocarcinoma is unclear. This study aimed to explore the roles of unlocking phenotypic plasticity in immune status, prognosis, and treatment in patients with lung adenocarcinoma (LUAD). Methods: Differentially expressed genes (DEGs) and clinical information of UPP were selected from the cancer genome atlas (TCGA) database, and the GO, KEGG enrichment analyses were performed. The independent prognostic genes were determined by univariate and multivariate Cox regression, and the UPP signature score was constructed. Patients with LUAD were divided into high- and low-risk groups according to the median of score, and the immunocytes and immune function, the gene mutation, and drug sensitivities between the two groups were analyzed. Finally, the results were validated in the GEO database. Results: Thirty-nine significantly DEGs were determined. Enrichment analysis showed that UPP-related genes were related to protein polysaccharides and drug resistance. The prognostic results showed that the survival of patients in the high-risk group was poorer than that in the low-risk group (p < 0.001). In the high- and low-risk groups, single nucleotide polymorphism (SNP) and C > T are the most common dissent mutations. The contents of immune cells were significantly different between high- and low-risk groups. And the immune functions were also significantly different, indicating that UPP affects the immunity in LUAD. The results from TCGA were validated in the GEO. Conclusion: Our research has proposed a new and reliable prognosis indicator to predict the overall survival. Evaluation of the UPP could help the clinician to predict therapeutic responses and make individualized treatment plans in patients with LUAD.
Collapse
Affiliation(s)
- Feng Wang
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Hongjuan Du
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Bibo Li
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Zhibin Luo
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Lei Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Lei Zhu,
| |
Collapse
|