1
|
Lichty JD, Mane H, Yarmey VR, Miguel AS. Amyloid β induces hormetic-like effects through major stress pathways in a C. elegans model of Alzheimer's Disease. PLoS One 2025; 20:e0315810. [PMID: 40273133 PMCID: PMC12021181 DOI: 10.1371/journal.pone.0315810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/02/2024] [Indexed: 04/26/2025] Open
Abstract
Amyloid β (Aβ) is a peptide known for its characteristic aggregates in Alzheimer's Disease and its ability to induce a wide range of detrimental effects in various model systems. However, Aβ has also been shown to induce some beneficial effects, such as antimicrobial properties against pathogens. In this work, we explore the influence of Aβ in stress resistance in a C. elegans model of Alzheimer's Disease. We found that C. elegans that express human Aβ exhibit increased resistance to heat and anoxia, but not to oxidative stress. This beneficial effect of Aβ was driven from Aβ in neurons, where the level of induction of Aβ expression correlated with stress resistance levels. Transcriptomic analysis revealed that this selective stress resistance was mediated by the Heat Shock Protein (HSPs) family of genes. Furthermore, neuropeptide signaling was necessary for Aβ to induce stress resistance, suggesting neuroendocrine signaling plays a major role in activating organismal stress response pathways. These results highlight the potential beneficial role of Aβ in cellular function, as well as its complex effects on cellular and organismal physiology that must be considered when using C. elegans as a model for Alzheimer's Disease.
Collapse
Affiliation(s)
- James D. Lichty
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Hrishikesh Mane
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Victoria R. Yarmey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
- Joint Department of Biomedical Engineering, North Carolina State University, University of North Carolina at Chapel Hill, Raleigh, North Carolina, United States of America
| | - Adriana San Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
2
|
Romero-Sanz S, Caldero-Escudero E, Álvarez-Illera P, Santo-Domingo J, de la Fuente S, García-Casas P, Fonteriz RI, Montero M, Álvarez J. Rescue of a Rotenone Model of Parkinson's Disease in C. elegans by the Mitochondrial Na +/Ca 2+ Exchanger Inhibitor CGP37157. Int J Mol Sci 2025; 26:3371. [PMID: 40244237 PMCID: PMC11989483 DOI: 10.3390/ijms26073371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
We have previously shown that the compound CGP37157, a mitochondrial Na+/Ca2+ exchanger inhibitor, increases lifespan and improves muscle and mitochondrial structure during aging in wild-type C. elegans nematodes. We used here a rotenone model of Parkinson's disease in C. elegans to test the ability of CGP37157 to rescue the alterations induced by the toxicant. Rotenone, a mitochondrial respiratory chain complex I inhibitor, reduced worm lifespan and muscle activity, measured as worm mobility, pharyngeal pumping, and defecation rate. It also increased ROS production, decreased mitochondrial membrane potential, and disorganized mitochondrial structure. Moreover, it induced degeneration of dopaminergic neurons and changes in behavior. We found that CGP37157 produced a partial or complete reversal of most of these alterations. These results are consistent with our previous proposal that Ca2+ homeostasis is important in the development of neurodegenerative diseases, and modulation of the Ca2+ signaling toolkit may be a novel target for their treatment.
Collapse
Affiliation(s)
- Silvia Romero-Sanz
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain; (S.R.-S.); (E.C.-E.); (P.Á.-I.); (J.S.-D.); (S.d.l.F.); (P.G.-C.); (R.I.F.); (M.M.)
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47005 Valladolid, Spain
| | - Elena Caldero-Escudero
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain; (S.R.-S.); (E.C.-E.); (P.Á.-I.); (J.S.-D.); (S.d.l.F.); (P.G.-C.); (R.I.F.); (M.M.)
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47005 Valladolid, Spain
| | - Pilar Álvarez-Illera
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain; (S.R.-S.); (E.C.-E.); (P.Á.-I.); (J.S.-D.); (S.d.l.F.); (P.G.-C.); (R.I.F.); (M.M.)
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47005 Valladolid, Spain
| | - Jaime Santo-Domingo
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain; (S.R.-S.); (E.C.-E.); (P.Á.-I.); (J.S.-D.); (S.d.l.F.); (P.G.-C.); (R.I.F.); (M.M.)
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47005 Valladolid, Spain
| | - Sergio de la Fuente
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain; (S.R.-S.); (E.C.-E.); (P.Á.-I.); (J.S.-D.); (S.d.l.F.); (P.G.-C.); (R.I.F.); (M.M.)
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47005 Valladolid, Spain
| | - Paloma García-Casas
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain; (S.R.-S.); (E.C.-E.); (P.Á.-I.); (J.S.-D.); (S.d.l.F.); (P.G.-C.); (R.I.F.); (M.M.)
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47005 Valladolid, Spain
| | - Rosalba I. Fonteriz
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain; (S.R.-S.); (E.C.-E.); (P.Á.-I.); (J.S.-D.); (S.d.l.F.); (P.G.-C.); (R.I.F.); (M.M.)
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47005 Valladolid, Spain
| | - Mayte Montero
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain; (S.R.-S.); (E.C.-E.); (P.Á.-I.); (J.S.-D.); (S.d.l.F.); (P.G.-C.); (R.I.F.); (M.M.)
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47005 Valladolid, Spain
| | - Javier Álvarez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain; (S.R.-S.); (E.C.-E.); (P.Á.-I.); (J.S.-D.); (S.d.l.F.); (P.G.-C.); (R.I.F.); (M.M.)
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47005 Valladolid, Spain
| |
Collapse
|
3
|
Baysah CZ, Dohoney RA, Palanikumar L, Stillman NH, Penney AL, Sola AD, Paredes DA, Magzoub M, Kumar S. A Brain-Penetrating Foldamer Rescues Aβ Aggregation-Associated Alzheimer's Disease Phenotypes in In Vivo Models. ACS Chem Neurosci 2025; 16:1309-1322. [PMID: 40070152 DOI: 10.1021/acschemneuro.4c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is the leading cause of dementia, affecting nearly 55 million people across the world. One of the central pathological factors associated with AD is the aggregation of Aβ42, a peptide product cleaved through pathological processes in AD. Under pathological conditions, Aβ42 aggregates into insoluble plaques in the brain and impairs the function of neurons, which contributes to the cognitive decline associated with AD. Therefore, the modulation of Aβ42 aggregation is considered a potential therapeutic intervention for AD. Using an Oligoquinoline-based foldamer library, we have identified a potent foldamer antagonist (SK-131) of Aβ42 aggregation. SK-131 inhibits the aggregation by inducing a α-helical structure in monomeric Aβ42. Here, we demonstrated that SK-131 rescues Aβ42 aggregation-associated phenotypes in AD cellular and multiple Caenorhabditis elegans AD models, including intracellular inhibition of Aβ42 aggregation, rescue of behavioral deficits, and attenuation of reactive oxygen species. It efficiently crosses the blood-brain barrier and demonstrates favorable pharmaceutical properties. It also potently inhibits Zn2+-mediated Aβ42 aggregation by potentially displacing Zn2+ from Aβ42. In summary, we have identified a potent brain-penetrating foldamer that efficiently rescues AD phenotypes in in vivo models. Unlike most of the therapeutic approaches that target Aβ aggregates, we have identified and validated a novel therapeutic pathway by inducing structural change in Aβ and rescuing AD phenotypes in in vivo models. This study will further aid in the quest to identify lead therapeutics to slow or stop the progression of AD.
Collapse
Affiliation(s)
- Charles Zuwu Baysah
- Department of Chemistry and Biochemistry, University of Denver, F.W. Olin Hall, 2190 E Iliff Ave, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Ave, Suite 579, Denver, Colorado 80208, United States
| | - Ryan A Dohoney
- Department of Chemistry and Biochemistry, University of Denver, F.W. Olin Hall, 2190 E Iliff Ave, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Ave, Suite 579, Denver, Colorado 80208, United States
| | - L Palanikumar
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, UAE
| | - Nicholas H Stillman
- Department of Chemistry and Biochemistry, University of Denver, F.W. Olin Hall, 2190 E Iliff Ave, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Ave, Suite 579, Denver, Colorado 80208, United States
| | - Alexandra L Penney
- The Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Ave, Suite 579, Denver, Colorado 80208, United States
- Department of Biological Sciences, University of Denver, F.W. Olin Hall, 2190 E Iliff Ave, Denver, Colorado 80210, United States
| | - Andres D Sola
- Department of Chemistry and Biochemistry, University of Denver, F.W. Olin Hall, 2190 E Iliff Ave, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Ave, Suite 579, Denver, Colorado 80208, United States
| | - Daniel A Paredes
- Department of Chemistry and Biochemistry, University of Denver, F.W. Olin Hall, 2190 E Iliff Ave, Denver, Colorado 80210, United States
- Ritchie School of Engineering and Computer Science, University of Denver, 2155 E Wesley Ave, Denver, Colorado 80210, United States
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, UAE
| | - Sunil Kumar
- Department of Chemistry and Biochemistry, University of Denver, F.W. Olin Hall, 2190 E Iliff Ave, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Ave, Suite 579, Denver, Colorado 80208, United States
- Molecular and Cellular Biophysics Program, University of Denver, Boettcher West, Room 228, 2050 E. Iliff Ave, Denver, Colorado 80210, United States
| |
Collapse
|
4
|
Torres AK, Mira RG, Pinto C, Inestrosa NC. Studying the mechanisms of neurodegeneration: C. elegans advantages and opportunities. Front Cell Neurosci 2025; 19:1559151. [PMID: 40207239 PMCID: PMC11979225 DOI: 10.3389/fncel.2025.1559151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Caenorhabditis elegans has been widely used as a model organism in neurodevelopment for several decades due to its simplicity, rapid growth, short life cycle, transparency, and rather simple genetics. It has been useful in modeling neurodegenerative diseases by the heterologous expression of the major proteins that form neurodegenerative-linked aggregates such as amyloid-β peptide, tau protein, and α-synuclein, among others. Furthermore, chemical treatments as well as the existence of several interference RNA libraries, transgenic worm lines, and the possibility of generating new transgenic strains create a magnificent range of possible tools to study the signaling pathways that could confer protection against protein aggregates or, on the contrary, are playing a detrimental role. In this review, we summarize the different C. elegans models of neurodegenerative diseases with a focus on Alzheimer's and Parkinson's diseases and how genetic tools could be used to dissect the signaling pathways involved in their pathogenesis mentioning several examples. Finally, we discuss the use of pharmacological agents in C. elegans models that could help to study these disease-associated signaling pathways and the powerful combinations of experimental designs with genetic tools. This review highlights the advantages of C. elegans as a valuable intermediary between in vitro and mammalian in vivo models in the development of potential new therapies.
Collapse
Affiliation(s)
- Angie K. Torres
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo G. Mira
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Cristina Pinto
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C. Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Xu R, Kang Q, Yang X, Yi P, Zhang R. Unraveling Molecular Targets for Neurodegenerative Diseases Through Caenorhabditis elegans Models. Int J Mol Sci 2025; 26:3030. [PMID: 40243699 PMCID: PMC11988803 DOI: 10.3390/ijms26073030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and prion disease, represent a group of age-related disorders that pose a growing and formidable challenge to global health. Despite decades of extensive research that has uncovered key genetic factors and biochemical pathways, the precise molecular mechanisms underlying these diseases and effective therapeutic strategies remain elusive. Caenorhabditis elegans (C. elegans) has emerged as a powerful model organism for studying NDDs due to its unique biological features such as genetic tractability, conserved molecular pathways, and ease of high-throughput screening. This model provides an exceptional platform for identifying molecular targets associated with NDDs and developing novel therapeutic interventions. This review highlights the critical role of C. elegans in elucidating the complex molecular mechanisms of human NDDs, with a particular focus on recent advancements and its indispensable contributions to the discovery of molecular targets and therapeutic strategies for these NDDs.
Collapse
Affiliation(s)
- Rongmei Xu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230002, China; (R.X.); (X.Y.)
| | - Qiaoju Kang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Q.K.); (P.Y.)
| | - Xuefei Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230002, China; (R.X.); (X.Y.)
| | - Ping Yi
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Q.K.); (P.Y.)
| | - Rongying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (Q.K.); (P.Y.)
| |
Collapse
|
6
|
Oyerinde TO, Anadu VE, Olajide TS, Ijomone OK, Okeowo OM, Ijomone OM. Stress-induced neurodegeneration and behavioral alterations in Caenorhabditis elegans: Insights into the evolutionary conservation of stress-related pathways and implications for human health. PROGRESS IN BRAIN RESEARCH 2025; 291:405-425. [PMID: 40222789 DOI: 10.1016/bs.pbr.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Stress is a significant determinant for a range of neurological and psychiatric illnesses, and comprehending its influence on the brain is vital for developing effective interventions. Caenorhabditis elegans (C. elegans), a tiny nematode, has become a potent model system for investigating the impact of stress on neuronal integrity, behavior, and lifespan. This chapter presents a comprehensive summary of the existing understanding of stress-induced neurodegeneration, behavioral abnormalities, and changes in lifespan in C. elegans. We explored the stress response pathways in C. elegans, specifically focusing on the heat shock response and insulin-like signaling (ILS) pathway, targeting how these pathways affect neural integrity and functions. Additionally, this chapter highlighted behavioral modifications such as changes in locomotion, feeding, pharyngeal pumping, defecation, and copulation behaviors that occur in C. elegans following exposure to stressors, and how these findings contribute to our comprehension of stress-related illnesses. Furthermore, the evolutionary preservation of stress responses in both C. elegans and humans, underscoring the significance of C. elegans studies for translational research were highlighted. In conclusion, the possible implications of C. elegans research on human well-being, with a specific emphasis on the discovery of targets for treatment and the creation of innovative approaches to address stress-related conditions are discussed in this chapter.
Collapse
Affiliation(s)
- Toheeb O Oyerinde
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria.
| | - Victor E Anadu
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Tobiloba S Olajide
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria
| | - Olayemi K Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Oritoke M Okeowo
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, Federal University of Technology, Akure, Nigeria
| | - Omamuyovwi M Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Nigeria; Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria; Albeit Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
7
|
Currie SD, Benson DB, Xie ZR, Wang JS, Tang L. Utilization of Artificial Intelligence Coupled with a High-Throughput, High-Content Platform in the Exploration of Neurodevelopmental Toxicity of Individual and Combined PFAS. J Xenobiot 2025; 15:24. [PMID: 39997367 PMCID: PMC11857074 DOI: 10.3390/jox15010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used in various products, such as firefighting foams and non-stick cookware, due to their resistance to heat and degradation. However, these same properties make them persistent in the environment and human body, raising public health concerns. This study selected eleven PFAS commonly found in drinking water and exposed Caenorhabditis elegans to concentrations ranging from 0.1 to 200 µM to assess neurodevelopmental toxicity using a high-throughput, high-content screening (HTS) platform coupled with artificial intelligence for image analysis. Our findings showed that PFAS such as 6:2 FTS, HFPO-DA, PFBA, PFBS, PFHxA, and PFOS inhibited dopaminergic neuron activity, with fluorescence intensity reductions observed across concentrations from 0.1 to 100 µM. PFOS and PFBS also disrupted synaptic transmission, causing reduced motility and increased paralysis in aldicarb-induced assays, with the most pronounced effects at higher concentrations. These impairments in both neuron activity and synaptic function led to behavioral deficits. Notably, PFOS was one of the most toxic PFAS, affecting multiple neurodevelopmental endpoints. These results emphasize the developmental risks of PFAS exposure, highlighting the impact of both individual compounds and mixtures on neurodevelopment. This knowledge is essential for assessing PFAS-related health risks and informing mitigation strategies.
Collapse
Affiliation(s)
- Seth D. Currie
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA (D.B.B.)
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - David Blake Benson
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA (D.B.B.)
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Zhong-Ru Xie
- School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA (D.B.B.)
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Lili Tang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA (D.B.B.)
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Lin X, Dong X, Sun Y. Dual-Carbon Dots Composite: A Multifunctional Photo-Propelled Nanomotor Against Alzheimer's β-Amyloid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407154. [PMID: 39392092 DOI: 10.1002/smll.202407154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/16/2024] [Indexed: 10/12/2024]
Abstract
The abnormal accumulation of β-amyloid protein (Aβ) is considered as the main pathological hallmark of Alzheimer's disease (AD). The design of potent multifunctional theranostic agents targeting Aβ is one of the effective strategies for AD prevention and treatment. Nanomotors as intelligent, advanced, and multifunctional nanoplatforms can perform many complex tasks, but their application in AD theranostics is rare. Herein, sub-10nm multifunctional dual-carbon dots composites (ERCD) with photo-propelled nanomotor behavior are fabricated by conjugating near-infrared (NIR) carbon dots (RCD) of thermogenic and photodynamic capability with the previously reported epigallocatechin gallate-derived carbonized polymer dots (ECD). ERCD-1 (ECD:RCD = 1:2.5) showed potent inhibitory capability similar to ECD in the absence of NIR light, and exhibited photooxygenation activity and nanomotor behavior powered by "self-thermophoretic force" under NIR irradiation, significantly enhancing the inhibition, disaggregation, and photooxygenation capabilities. The nanomotor suppressed Aβ fibrillization and rapidly disaggregated mature Aβ fibrils at very low concentrations (0.5 µg mL-1). Moreover, the NIR-activated ERCD-1 imaged Aβ plaques in vivo and prolonged nematode lifespan by 6 d at 2 µg mL-1. As a proof-of-concept, this work opened a new avenue to the design of multifunctional sub-10nm nanomotors targeting Aβ for AD theranostics.
Collapse
Affiliation(s)
- Xiaoding Lin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
9
|
Ganguly U, Carroll T, Nehrke K, Johnson GVW. Mitochondrial Quality Control in Alzheimer's Disease: Insights from Caenorhabditis elegans Models. Antioxidants (Basel) 2024; 13:1343. [PMID: 39594485 PMCID: PMC11590956 DOI: 10.3390/antiox13111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that is classically defined by the extracellular deposition of senile plaques rich in amyloid-beta (Aβ) protein and the intracellular accumulation of neurofibrillary tangles (NFTs) that are rich in aberrantly modified tau protein. In addition to aggregative and proteostatic abnormalities, neurons affected by AD also frequently possess dysfunctional mitochondria and disrupted mitochondrial maintenance, such as the inability to eliminate damaged mitochondria via mitophagy. Decades have been spent interrogating the etiopathogenesis of AD, and contributions from model organism research have aided in developing a more fundamental understanding of molecular dysfunction caused by Aβ and toxic tau aggregates. The soil nematode C. elegans is a genetic model organism that has been widely used for interrogating neurodegenerative mechanisms including AD. In this review, we discuss the advantages and limitations of the many C. elegans AD models, with a special focus and discussion on how mitochondrial quality control pathways (namely mitophagy) may contribute to AD development. We also summarize evidence on how targeting mitophagy has been therapeutically beneficial in AD. Lastly, we delineate possible mechanisms that can work alone or in concert to ultimately lead to mitophagy impairment in neurons and may contribute to AD etiopathology.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Trae Carroll
- Department of Pathology, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| |
Collapse
|
10
|
Naskar R, Ghosh A, Bhattacharya R, Chakraborty S. A critical appraisal of geroprotective activities of flavonoids in terms of their bio-accessibility and polypharmacology. Neurochem Int 2024; 180:105859. [PMID: 39265701 DOI: 10.1016/j.neuint.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Flavonoids, a commonly consumed natural product, elicit health-benefits such as antioxidant, anti-inflammatory, antiviral, anti-allergic, hepatoprotective, anti-carcinogenic and neuroprotective activities. Several studies have reported the beneficial role of flavonoids in improving memory, learning, and cognition in clinical settings. Their mechanism of action is mediated through the modulation of multiple signalling cascades. This polypharmacology makes them an attractive natural scaffold for designing and developing new effective therapeutics for complex neurological disorders like Alzheimer's disease and Parkinson's disease. Flavonoids are shown to inhibit crucial targets related to neurodegenerative disorders (NDDs), including acetylcholinesterase, butyrylcholinesterase, β-secretase, γ-secretase, α-synuclein, Aβ protein aggregation and neurofibrillary tangles formation. Conserved neuro-signalling pathways related to neurotransmitter biogenesis and inactivation, ease of genetic manipulation and tractability, cost-effectiveness, and their short lifespan make Caenorhabditis elegans one of the most frequently used models in neuroscience research and high-throughput drug screening for neurodegenerative disorders. Here, we critically appraise the neuroprotective activities of different flavonoids based on clinical trials and epidemiological data. This review provides critical insights into the absorption, metabolism, and tissue distribution of various classes of flavonoids, as well as detailed mechanisms of the observed neuroprotective activities at the molecular level, to rationalize the clinical data. We further extend the review to critically evaluate the scope of flavonoids in the disease management of neurodegenerative disorders and review the suitability of C. elegans as a model organism to study the neuroprotective efficacy of flavonoids and natural products.
Collapse
Affiliation(s)
- Roumi Naskar
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Anirrban Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Raja Bhattacharya
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India.
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
11
|
Talarmin-Gas C, Smolyakov G, Parisi C, Scandola C, Andrianasolonirina V, Lecoq C, Houtart V, Lee SH, Adle-Biassette H, Thiébot B, Ganderton T, Manivet P. Validation of metaxin-2 deficient C. elegans as a model for MandibuloAcral Dysplasia associated to mtx-2 (MADaM) syndrome. Commun Biol 2024; 7:1398. [PMID: 39462037 PMCID: PMC11513083 DOI: 10.1038/s42003-024-06967-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
MandibuloAcral Dysplasia associated to MTX2 gene (MADaM) is a recently described progeroid syndrome (accelerated aging disease) whose clinical manifestations include skin abnormalities, growth retardation, and cardiovascular diseases. We previously proposed that mtx-2-deficient C. elegans could be used as a model for MADaM and to support this, we present here our comprehensive phenotypic characterization of these worms using atomic force microscopy (AFM), transcriptomic, and oxygen consumption rate analyses. AFM analysis showed that young mtx-2-less worms had a significantly rougher, less elastic cuticle which becomes significantly rougher and less elastic as they age, and abnormal mitochondrial morphology. mtx-2 C. elegans displayed slightly delayed development, decreased pharyngeal pumping, significantly reduced mitochondrial respiratory capacities, and transcriptomic analysis identified perturbations in the aging, TOR, and WNT-signaling pathways. The phenotypic characteristics of mtx-2 worms shown here are analogous to many of the human clinical presentations of MADaM and we believe this validates their use as a model which will allow us to uncover the molecular details of the disease and develop new therapeutics and treatments.
Collapse
Affiliation(s)
- Chloé Talarmin-Gas
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France.
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France.
| | - Georges Smolyakov
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Cleo Parisi
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Cyril Scandola
- Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging Unit, 75015, Paris, France
| | - Valérie Andrianasolonirina
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Cloé Lecoq
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Valentine Houtart
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | | | - Homa Adle-Biassette
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
- AP-HP, DMU DREAM, Service d'Anatomocytopathologie, Hôpital Lariboisière, Paris, France
| | - Bénédicte Thiébot
- CY Cergy Paris Université, Université d'Evry, Université Paris-Saclay, CNRS, LAMBE, F-95000, Cergy, France
| | - Timothy Ganderton
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France
| | - Philippe Manivet
- Université Paris Cité, INSERM UMR 1141 "NeuroDiderot", FHU Iio2-D2, Paris, France.
- AP-HP, DMU BioGem, Centre de Ressources Biologiques Biobank Lariboisière/Saint Louis (BB-0033-00064), Hôpital Lariboisière, Paris, France.
- CeleScreen SAS, Paris, France.
| |
Collapse
|
12
|
Gu YQ, Zhou X, Yao LH, Wang Q, Zhou CN, Liu ZD. Relationship between serum neutrophil gelatinase-associated lipocalin levels and cognitive impairment, anxiety, and depressive symptoms in acute ischemic stroke. World J Psychiatry 2024; 14:1467-1473. [DOI: 10.5498/wjp.v14.i10.1467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/14/2024] [Indexed: 10/17/2024] Open
Abstract
BACKGROUND Acute ischemic stroke (AIS) is a significant global health issue with increasing incidence owing to aging populations and rising cardiovascular risk factors. In addition to physical impairments, AIS frequently leads to neuropsychiatric complications, such as cognitive impairment, anxiety, and depressive symptoms, which adversely affect patients’ quality of life and rehabilitation. Neutrophil gelatinase-associated lipocalin (NGAL) has emerged as a potential biomarker for various conditions, including AIS. This study investigated the association between serum NGAL levels at admission and neuropsychiatric complications in patients with AIS.
AIM To investigate the relationship between serum NGAL levels at admission and neuropsychiatric complications in patients with AIS.
METHODS Between January 2022 and December 2023, 150 patients with AIS were enrolled. Serum NGAL levels were measured at admission using an enzyme-linked immunosorbent assay. Cognitive function was assessed using the Mini-Mental State Examination, while anxiety and depressive symptoms were evaluated using the Hospital Anxiety and Depression Scale at discharge. The relationship between serum NGAL levels and cognitive impairment, anxiety, and depressive symptoms was analyzed using multivariate logistic regression, adjusted for potential confounders of age, sex, body mass index, smoking status, hypertension, diabetes mellitus, dyslipidemia, previous stroke, and stroke severity.
RESULTS The mean age of the participants was 65.4 ± 10.2 years, and 58% were males. Prevalence rates of cognitive impairment, anxiety, and depressive symptoms at discharge were 34.7%, 28.0%, and 32.0%, respectively. Serum NGAL levels were significantly higher in patients with cognitive impairment (median: 5.6 ng/mL vs 3.2 ng/mL, P < 0.001), anxiety (median: 5.1 ng/mL vs 3.5 ng/mL, P = 0.002), and depressive symptoms (median: 5.4 ng/mL vs 3.3 ng/mL, P < 0.001), compared to those without these conditions. Multivariate logistic regression analysis showed that higher serum NGAL levels at admission were independently associated with cognitive impairment [odds ratio (OR) = 1.42, 95% confidence interval (CI): 1.18-1.71, P < 0.001], anxiety (OR = 1.28, 95%CI: 1.09-1.51, P = 0.003), and depressive symptoms (OR = 1.39, 95%CI: 1.16-1.67, P < 0.001) after adjusting for potential confounders.
CONCLUSION Elevated serum NGAL levels were independently associated with cognitive impairment, anxiety, and depressive symptoms in patients with AIS; and may function as potential biomarkers for patients at risk.
Collapse
Affiliation(s)
- You-Quan Gu
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Xuan Zhou
- Department of Neurology, The First Clinical Medical College of Lanzhou University, Lanzhou 730099, Gansu Province, China
| | - Li-He Yao
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Qiang Wang
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Chao-Ning Zhou
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Zhao-Dong Liu
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
13
|
Tiwari V, Buvarp E, Borbolis F, Puligilla C, Croteau D, Palikaras K, Bohr V. Loss of DNA glycosylases improves health and cognitive function in a C. elegans model of human tauopathy. Nucleic Acids Res 2024; 52:10965-10985. [PMID: 39149885 PMCID: PMC11472166 DOI: 10.1093/nar/gkae705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/20/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder representing a major burden on families and society. Some of the main pathological hallmarks of AD are the accumulation of amyloid plaques (Aβ) and tau neurofibrillary tangles. However, it is still unclear how Aβ and tau aggregates promote specific phenotypic outcomes and lead to excessive oxidative DNA damage, neuronal cell death and eventually to loss of memory. Here we utilized a Caenorhabditis elegans (C. elegans) model of human tauopathy to investigate the role of DNA glycosylases in disease development and progression. Transgenic nematodes expressing a pro-aggregate form of tau displayed altered mitochondrial content, decreased lifespan, and cognitive dysfunction. Genetic ablation of either of the two DNA glycosylases found in C. elegans, NTH-1 and UNG-1, improved mitochondrial function, lifespan, and memory impairment. NTH-1 depletion resulted in a dramatic increase of differentially expressed genes, which was not apparent in UNG-1 deficient nematodes. Our findings clearly show that in addition to its enzymatic activity, NTH-1 has non-canonical functions highlighting its modulation as a potential therapeutic intervention to tackle tau-mediated pathology.
Collapse
Affiliation(s)
- Vinod Tiwari
- Section on DNA Repair, National Institute on Aging, Baltimore, MD 21224, USA
| | - Elisabeth Buvarp
- Section on DNA Repair, National Institute on Aging, Baltimore, MD 21224, USA
| | - Fivos Borbolis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Chandrakala Puligilla
- Section for Telomere Maintenance, LGG, National Institute on Aging, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Section on DNA Repair, National Institute on Aging, Baltimore, MD 21224, USA
- Computational Biology & Genomics Core, LGG, NIA, Baltimore, MD 21224, USA
| | - Konstantinos Palikaras
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, Baltimore, MD 21224, USA
- Center for Healthy Aging, University of Copenhagen, 2200 N, Denmark
| |
Collapse
|
14
|
Gonçalves PB, Sodero ACR, Cordeiro Y. Natural products targeting amyloid-β oligomer neurotoxicity in Alzheimer's disease. Eur J Med Chem 2024; 276:116684. [PMID: 39032401 DOI: 10.1016/j.ejmech.2024.116684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) constitutes a major global health issue, characterized by progressive neurodegeneration and cognitive impairment, for which no curative treatment is currently available. Current therapeutic approaches are focused on symptom management, highlighting the critical need for disease-modifying therapy. The hallmark pathology of AD involves the aggregation and accumulation of amyloid-β (Aβ) peptides in the brain. Consequently, drug discovery efforts in recent decades have centered on the Aβ aggregation cascade, which includes the transition of monomeric Aβ peptides into toxic oligomers and, ultimately, mature fibrils. Historically, anti-Aβ strategies focused on the clearance of amyloid fibrils using monoclonal antibodies. However, substantial evidence has highlighted the critical role of Aβ oligomers (AβOs) in AD pathogenesis. Soluble AβOs are now recognized as more toxic than fibrils, directly contributing to synaptic impairment, neuronal damage, and the onset of AD. Targeting AβOs has emerged as a promising therapeutic approach to mitigate cognitive decline in AD. Natural products (NPs) have demonstrated promise against AβO neurotoxicity through various mechanisms, including preventing AβO formation, enhancing clearance mechanisms, or converting AβOs into non-toxic species. Understanding the mechanisms by which anti-AβO NPs operate is useful for developing disease-modifying treatments for AD. In this review, we explore the role of NPs in mitigating AβO neurotoxicity for AD drug discovery, summarizing key evidence from biophysical methods, cellular assays, and animal models. By discussing how NPs modulate AβO neurotoxicity across various experimental systems, we aim to provide valuable insights into novel therapeutic strategies targeting AβOs in AD.
Collapse
Affiliation(s)
| | | | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-900, Brazil
| |
Collapse
|
15
|
Weishaupt AK, Ruecker L, Meiners T, Schwerdtle T, Silva Avila D, Aschner M, Bornhorst J. Copper-mediated neurotoxicity and genetic vulnerability in the background of neurodegenerative diseases in C. elegans. Toxicol Sci 2024; 201:254-262. [PMID: 39067045 PMCID: PMC11424883 DOI: 10.1093/toxsci/kfae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
The mechanisms associated with neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), have yet to be fully characterized, and genetic as well as environmental factors in their disease etiology are underappreciated. Although mutations in genes such as PARKIN and LRRK2 have been linked to PD, the idiopathic component of the disease suggests a contribution of environmental risk factors, including metals, such as copper (Cu). Cu overexposure has been reported to cause oxidative stress and neurotoxicity, but its role in neurodegenerative diseases is rarely studied. Using Caenorhabditis elegans (C. elegans) as a model organism for neurotoxicity, we assessed the effects of Cu oversupply in AD and PD models. Our findings reveal that although copper treatment did not induce neurodegeneration in wild-type worms or the AD model, it significantly exacerbated neurodegeneration in the PD-associated mutants PARKIN and LRRK2. These results suggest that genetic predisposition for PD enhances the sensitivity to copper toxicity, highlighting the multifactorial nature of neurodegenerative diseases. Furthermore, our study provides insight into the mechanisms underlying Cu-induced neurotoxicity in PD models, including disruptions in dopamine levels, altered dopamine-dependent behavior and degraded dopaminergic neurons. Overall, our novel findings contribute to a better understanding of the complex interactions between genetic susceptibility, environmental factors, and neurodegenerative disease pathogenesis, emphasizing the importance of a tightly regulated Cu homeostasis in the etiology of PD. Copper oversupply exacerbated neurodegeneration in Caenorhabditis elegans models of Parkinson's disease, highlighting the genetic susceptibility and emphasizing the crucial role of tightly regulated copper homeostasis in Parkinson's disease pathogenesis.
Collapse
Affiliation(s)
- Ann-Kathrin Weishaupt
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin, Potsdam, Jena, Wuppertal, Germany
| | - Lysann Ruecker
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
| | - Torben Meiners
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin, Potsdam, Jena, Wuppertal, Germany
- German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Daiana Silva Avila
- Laboratory of Toxicology and Biochemistry in Caenorhabditis elegans, Universidade Federal do Pampa, 97501-970 Uruguaiana, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Julia Bornhorst
- Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119 Wuppertal, Germany
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin, Potsdam, Jena, Wuppertal, Germany
| |
Collapse
|
16
|
Parvand M, Liang JJH, Bozorgmehr T, Born D, Luna Cortes A, Rankin CH. A familial Alzheimer's disease associated mutation in presenilin-1 mediates amyloid-beta independent cell specific neurodegeneration. PLoS One 2024; 19:e0289435. [PMID: 39240956 PMCID: PMC11379242 DOI: 10.1371/journal.pone.0289435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/23/2024] [Indexed: 09/08/2024] Open
Abstract
Mutations in the presenilin (PS) genes are a predominant cause of familial Alzheimer's disease (fAD). An ortholog of PS in the genetic model organism Caenorhabditis elegans (C. elegans) is sel-12. Mutations in the presenilin genes are commonly thought to lead to fAD by upregulating the expression of amyloid beta (Aβ), however this hypothesis has been challenged by recent evidence. As C. elegans lack amyloid beta (Aβ), the goal of this work was to examine Aβ-independent effects of mutations in sel-12 and PS1/PS2 on behaviour and sensory neuron morphology across the lifespan in a C. elegans model. Olfactory chemotaxis experiments were conducted on sel-12(ok2078) loss-of-function mutant worms. Adult sel-12 mutant worms showed significantly lower levels of chemotaxis to odorants compared to wild-type worms throughout their lifespan, and this deficit increased with age. The chemotaxis phenotype in sel-12 mutant worms is rescued by transgenic over-expression of human wild-type PS1, but not the classic fAD-associated variant PS1C410Y, when expression was driven by either the endogenous sel-12 promoter (Psel-12), a pan-neuronal promoter (Primb-1), or by a promoter whose primary expression was in the sensory neurons responsible for the chemotaxis behavior (Psra-6, Podr-10). The behavioural phenotype was also rescued by over-expressing an atypical fAD-linked mutation in PS1 (PS1ΔS169) that has been reported to leave the Notch pathway intact. An examination of the morphology of polymodal nociceptive (ASH) neurons responsible for the chemotaxis behavior also showed increased neurodegeneration over time in sel-12 mutant worms that could be rescued by the same transgenes that rescued the behaviour, demonstrating a parallel with the observed behavioral deficits. Thus, we report an Aβ-independent neurodegeneration in C. elegans that was rescued by cell specific over-expression of wild-type human presenilin.
Collapse
Affiliation(s)
- Mahraz Parvand
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joseph J H Liang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tahereh Bozorgmehr
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dawson Born
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alvaro Luna Cortes
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catharine H Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Sethi P, Bhaskar R, Singh KK, Gupta S, Han SS, Avinash D, Abomughaid MM, Koul A, Rani B, Ghosh S, Jha NK, Sinha JK. Exploring advancements in early detection of Alzheimer's disease with molecular assays and animal models. Ageing Res Rev 2024; 100:102411. [PMID: 38986845 DOI: 10.1016/j.arr.2024.102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Alzheimer's Disease (AD) is a challenging neurodegenerative condition, with overwhelming implications for affected individuals and healthcare systems worldwide. Animal models have played a crucial role in studying AD pathogenesis and testing therapeutic interventions. Remarkably, studies on the genetic factors affecting AD risk, such as APOE and TREM2, have provided valuable insights into disease mechanisms. Early diagnosis has emerged as a crucial factor in effective AD management, as demonstrated by clinical studies emphasizing the benefits of initiating treatment at early stages. Novel diagnostic technologies, including RNA sequencing of microglia, offer promising avenues for early detection and monitoring of AD progression. Therapeutic strategies remain to evolve, with a focus on targeting amyloid beta (Aβ) and tau pathology. Advances in animal models, such as APP-KI mice, and the advancement of anti-Aβ drugs signify progress towards more effective treatments. Therapeutically, the focus has shifted towards intricate approaches targeting multiple pathological pathways simultaneously. Strategies aimed at reducing Aβ plaque accumulation, inhibiting tau hyperphosphorylation, and modulating neuroinflammation are actively being explored, both in preclinical models and clinical trials. While challenges continue in developing validated animal models and translating preclinical findings to clinical success, the continuing efforts in understanding AD at molecular, cellular, and clinical levels offer hope for improved management and eventual prevention of this devastating disease.
Collapse
Affiliation(s)
- Paalki Sethi
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune, Maharashtra 411057, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - D Avinash
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Apurva Koul
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University, Jaipur, Rajsthan, India
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India.
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140401, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | | |
Collapse
|
18
|
Fitzsimons LA, Atif-Sheikh M, Lovely J, Mueth M, Rice M, Kotredes K, Howell G, Harrison BJ. CD2AP is Co-Expressed with Tropomyosin-Related Kinase A and Ras-Related Protein Rab-5A in Cholinergic Neurons of the Murine Basal Forebrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604961. [PMID: 39211110 PMCID: PMC11361140 DOI: 10.1101/2024.07.24.604961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Basal forebrain cholinergic neurons project to the hippocampus and cortex, are critical for learning and memory, and are central to the pathogenesis of Alzheimer's disease (AD). GWAS have consistently shown that genomic variants at the CD2AP gene locus are associated with significant increased risk of AD. GWAS studies have also shown that genetic variants in endocytosis genes, including RAB5A , significantly increase susceptibility to AD. Previous work in our lab has shown that CD2AP functions as a docking-scaffold/adaptor protein as a coordinator of nerve growth factor (NGF) and trophic signaling in neurons. We have also demonstrated that CD2AP positively regulates Rab5-mediated mechanisms of endocytosis in primary sensory neurons. The purpose of this study was to perform an in vivo characterization of CD2AP expression in cholinergic neurons of the brain regions most relevant to AD pathogenesis and to investigate the colocalization of CD2AP and Rab5 in cholinergic neurons of the murine basal forebrain. Brain tissue was perfused, harvested from ChAT BAC -eGFP transgenic mice (N=4 male, N=4 female; aged 10 mo), where cholinergic neurons (co-) express green fluorescence protein (GFP) in central and peripheral neurons that express choline acetyltransferase (ChAT). Frozen tissue sections were used to assess the specificity of the reporter in mouse brain along with localization of both CD2AP and Rab5 (co-) expression using immunofluorescence (IF) analysis of ChAT-GFP+ neurons and primary antibodies against ChAT, CD2AP and Rab5. Image J software was used to develop and optimize a colocalization assay for CD2AP and Rab5 puncta. Experiments were repeated in a follow-up cohort of aged-adult mice (N=2 male, N=2 female; aged 18 mo). IF expression of CD2AP was quantified in the basal forebrain, diagonal band of Broca (vDB), and striatal regions and compared to results from the cortical regions of the adult mouse brain. Colocalization of CD2AP was observed in the cell bodies of ChAT-GFP+ neurons of the striatum, vDB and basal forebrain regions, where CD2AP expression intensity as well as the number of cell bodies with positive signal increased incrementally. Colocalization analyses revealed near-complete overlap of CD2AP and Rab5 expression in ChAT-GFP+ cholinergic neurons of the basal forebrain region. We conclude that cholinergic neurons express CD2AP in healthy adult and aged-adult mouse brains. These data provide the first evidence of quantifiable CD2AP protein expression of cholinergic neurons specific to the diagonal band of Broca (vDB) and basal forebrain. Together with previous research from our lab, these data support a role for CD2AP in the pathogenesis of AD through orchestration of endocytosis and retrograde signaling. Ongoing studies are underway to verify these findings in a novel AD mouse model that incorporates the humanized variant of CD2AP , created by MODEL-AD, where we aim to further investigate how CD2AP variants may affect mechanistic components of Rab5 endocytosis as well as subsequent survival of cholinergic neurons in the context of known amyloid beta and Tau pathologies.
Collapse
|
19
|
Arantes LP, Cordeiro LM, Soares FAA. Evaluating amyloid-beta aggregation and toxicity in transgenic Caenorhabditis elegans models of Alzheimer's disease. Methods Cell Biol 2024; 192:189-202. [PMID: 39863391 DOI: 10.1016/bs.mcb.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms. Caenorhabditis elegans (C. elegans) is a simple and valuable organism to study the dynamics of Aβ. It may contribute to advancing our comprehension of AD development and progression, as well as to discovering new treatments. Herein, we describe usual protocols for evaluating Aβ aggregation and toxicity in transgenic C. elegans models of AD (CL2006, CL4176, GMC101, and CL2355 strains) through the visualization and quantification of the peptide with specific fluorescent dyes, in addition to the analysis of particular behaviors (paralysis and chemotaxis associated with learning).
Collapse
Affiliation(s)
| | - Larissa Marafiga Cordeiro
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil
| | - Félix Alexandre Antunes Soares
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil
| |
Collapse
|
20
|
Rodriguez P, Blakely RD. Sink or swim: Does a worm paralysis phenotype hold clues to neurodegenerative disease? J Cell Physiol 2024; 239:e31125. [PMID: 37795580 DOI: 10.1002/jcp.31125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Receiving a neurodegenerative disease (NDD) diagnosis, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis, is devastating, particularly given the limited options for treatment. Advances in genetic technologies have allowed for efficient modeling of NDDs in animals and brought hope for new disease-modifying medications. The complexity of the mammalian brain and the costs and time needed to identify and develop therapeutic leads limits progress. Modeling NDDs in invertebrates, such as the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, offers orders of magnitude increases in speed of genetic analysis and manipulation, and can be pursued at substantially reduced cost, providing an important, platform complement and inform research with mammalian NDD models. In this review, we describe how our efforts to exploit C. elegans for the study of neural signaling and health led to the discovery of a paralytic phenotype (swimming-induced paralysis) associated with altered dopamine signaling and, surprisingly, to the discovery of a novel gene and pathway whose dysfunction in glial cells triggers neurodegeneration. Research to date on swip-10 and its putative mammalian ortholog MBLAC1, suggests that a tandem analysis will offer insights into NDD mechanisms and insights into novel, disease-modifying therapeutics.
Collapse
Affiliation(s)
- Peter Rodriguez
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
21
|
Yu X, Tao J, Xiao T, Duan X. P-hydroxybenzaldehyde protects Caenorhabditis elegans from oxidative stress and β-amyloid toxicity. Front Aging Neurosci 2024; 16:1414956. [PMID: 38841104 PMCID: PMC11150654 DOI: 10.3389/fnagi.2024.1414956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Gastrodia elata is the dried tuber of the orchid Gastrodia elata Bl. It is considered a food consisting of a source of precious medicinal herbs, whose chemical composition is relatively rich. Gastrodia elata and its extracted fractions have been shown to have neuroprotective effects. P-hydroxybenzaldehyde (p-HBA), as one of the main active components of Gastrodia elata, has anti-inflammatory, antioxidative stress, and cerebral protective effects, which has potential for the treatment of Alzheimer's disease (AD). The aim of this study was to verify the role of p-HBA in AD treatment and to investigate its mechanism of action in depth based using the Caenorhabditis elegans (C. elegans) model. Methods In this study, we used paralysis, lifespan, behavioral and antistress experiments to investigate the effects of p-HBA on AD and aging. Furthermore, we performed reactive oxygen species (ROS) assay, thioflavin S staining, RNA-seq analysis, qPCR validation, PCR Array, and GFP reporter gene worm experiment to determine the anti-AD effects of p-HBA, as well as in-depth studies on its mechanisms. Results p-HBA was able to delay paralysis, improve mobility and resistance to stress, and delay aging in the AD nematode model. Further mechanistic studies showed that ROS and lipofuscin levels, Aβ aggregation, and toxicity were reduced after p-HBA treatment, suggesting that p-HBA ameliorated Aβ-induced toxicity by enhancing antioxidant and anti-aging activity and inhibiting Aβ aggregation. p-HBA had a therapeutic effect on AD by improving stress resistance, as indicated by the down-regulation of NLP-29 and UCR-11 expression and up-regulation of PQN-75 and LYS-3 expression. In addition, the gene microarray showed that p-HBA treatment played a positive role in genes related to AD, anti-aging, ribosomal protein pathway, and glucose metabolism, which were collectively involved in the anti-AD mechanism of p-HBA. Finally, we also found that p-HBA promoted nuclear localization of DAF-16 and increased the expression of SKN-1, SOD-3, and GST-4, which contributed significantly to inhibition of Aβ toxicity and enhancement of antioxidative stress. Conclusion Our work suggests that p-HBA has some antioxidant and anti-aging activities. It may be a viable candidate for the treatment and prevention of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
22
|
Romussi S, Giunti S, Andersen N, De Rosa MJ. C. elegans: a prominent platform for modeling and drug screening in neurological disorders. Expert Opin Drug Discov 2024; 19:565-585. [PMID: 38509691 DOI: 10.1080/17460441.2024.2329103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Human neurodevelopmental and neurodegenerative diseases (NDevDs and NDegDs, respectively) encompass a broad spectrum of disorders affecting the nervous system with an increasing incidence. In this context, the nematode C. elegans, has emerged as a benchmark model for biological research, especially in the field of neuroscience. AREAS COVERED The authors highlight the numerous advantages of this tiny worm as a model for exploring nervous system pathologies and as a platform for drug discovery. There is a particular focus given to describing the existing models of C. elegans for the study of NDevDs and NDegDs. Specifically, the authors underscore their strong applicability in preclinical drug development. Furthermore, they place particular emphasis on detailing the common techniques employed to explore the nervous system in both healthy and diseased states. EXPERT OPINION Drug discovery constitutes a long and expensive process. The incorporation of invertebrate models, such as C. elegans, stands as an exemplary strategy for mitigating costs and expediting timelines. The utilization of C. elegans as a platform to replicate nervous system pathologies and conduct high-throughput automated assays in the initial phases of drug discovery is pivotal for rendering therapeutic options more attainable and cost-effective.
Collapse
Affiliation(s)
- Stefano Romussi
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
| | - Sebastián Giunti
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Natalia Andersen
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María José De Rosa
- Laboratorio de Neurobiología de Invertebrados, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), UNS-CONICET, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
23
|
Valdés A, Sánchez-Martínez JD, Gallego R, Ibáñez E, Herrero M, Cifuentes A. In vivo neuroprotective capacity of a Dunaliella salina extract - comprehensive transcriptomics and metabolomics study. NPJ Sci Food 2024; 8:4. [PMID: 38200022 PMCID: PMC10782027 DOI: 10.1038/s41538-023-00246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
In this study, an exhaustive chemical characterization of a Dunaliella salina (DS) microalga extract obtained using supercritical fluids has been performed, and its neuroprotective capacity has been evaluated in vivo using an Alzheimer's disease (AD) transgenic model of Caenorhabditis elegans (strain CL4176). More than 350 compounds were annotated in the studied DS extract, with triacylglycerols, free fatty acids (FAs), carotenoids, apocarotenoids and glycerol being the most abundant. DS extract significantly protects C. elegans in a dose-dependent manner against Aβ-peptide paralysis toxicity, after 32 h, 53% of treated worms at 50 µg/mL were not paralyzed. This concentration was selected to further evaluate the transcriptomics and metabolomics changes after 26 h by using advanced analytical methodologies. The RNA-Seq data showed an alteration of 150 genes, mainly related to the stress and detoxification responses, and the retinol and lipid metabolism. The comprehensive metabolomics and lipidomics analyses allowed the identification of 793 intracellular metabolites, of which 69 were significantly altered compared to non-treated control animals. Among them, different unsaturated FAs, lysophosphatidylethanolamines, nucleosides, dipeptides and modified amino acids that have been previously reported as beneficial during AD progression, were assigned. These compounds could explain the neuroprotective capacity observed, thus, providing with new evidences of the protection mechanisms of this promising extract.
Collapse
Affiliation(s)
- Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain.
| | - José David Sánchez-Martínez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Rocío Gallego
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Miguel Herrero
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| |
Collapse
|
24
|
Wu Y, Chen Y, Yu X, Zhang M, Li Z. Towards Understanding Neurodegenerative Diseases: Insights from Caenorhabditis elegans. Int J Mol Sci 2023; 25:443. [PMID: 38203614 PMCID: PMC10778690 DOI: 10.3390/ijms25010443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The elevated occurrence of debilitating neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD) and Machado-Joseph disease (MJD), demands urgent disease-modifying therapeutics. Owing to the evolutionarily conserved molecular signalling pathways with mammalian species and facile genetic manipulation, the nematode Caenorhabditis elegans (C. elegans) emerges as a powerful and manipulative model system for mechanistic insights into neurodegenerative diseases. Herein, we review several representative C. elegans models established for five common neurodegenerative diseases, which closely simulate disease phenotypes specifically in the gain-of-function aspect. We exemplify applications of high-throughput genetic and drug screenings to illustrate the potential of C. elegans to probe novel therapeutic targets. This review highlights the utility of C. elegans as a comprehensive and versatile platform for the dissection of neurodegenerative diseases at the molecular level.
Collapse
Affiliation(s)
| | | | | | | | - Zhaoyu Li
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; (Y.W.); (Y.C.); (X.Y.); (M.Z.)
| |
Collapse
|
25
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
26
|
Sánchez-Martínez JD, Cifuentes A, Valdés A. Omics approaches to investigate the neuroprotective capacity of a Citrus sinensis (sweet orange) extract in a Caenorhabditis elegans Alzheimer's model. Food Res Int 2023; 172:113128. [PMID: 37689893 DOI: 10.1016/j.foodres.2023.113128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Citrus sinensis by-products are a promising source of neuroprotective molecules. In this study, a pressurized liquid extract of Citrus by-products (PLE100) has been extensively characterized, and its neuroprotective capacity tested in the Caenorhabditis elegans strain CL4176, a validated in vivo model of Alzheimer's disease (AD). More than 450 compounds have been annotated in the extract, being triacylglycerols (TGs), stigmastanes, fatty acids (FAs) and carbohydrates the most abundant. The results demonstrate that worms PLE100-treated are significantly protected in a dose-dependent manner against the Aβ-peptide paralysis toxicity. The RNA-Seq data showed an alteration of 294 genes mainly related to the stress response defense along with genes involved in the lipid transport and metabolism. Moreover, the comprehensive metabolomics study allowed the identification of 818 intracellular metabolites, of which 54 were significantly altered (mainly lipids). The integration of these and previous results provides with new evidences of the protection mechanisms of this promising extract.
Collapse
Affiliation(s)
| | - Alejandro Cifuentes
- Foodomics Laboratory, CIAL, CSIC-UAM, Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Alberto Valdés
- Foodomics Laboratory, CIAL, CSIC-UAM, Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
27
|
Wang Y, Liu W, Dong X, Sun Y. Design of Self-Assembled Nanoparticles as a Potent Inhibitor and Fluorescent Probe for β-Amyloid Fibrillization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12576-12589. [PMID: 37624641 DOI: 10.1021/acs.langmuir.3c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Alzheimer's disease (AD) remains incurable due to its complex pathogenesis. The deposition of β-amyloid (Aβ) in the brain appears much earlier than any clinical symptoms and plays an essential role in the occurrence and development of AD neuropathology, which implies the importance of early theranostics. Herein, we designed a self-assembled bifunctional nanoparticle (LC8-pCG-fLC8) for Aβ fluorescent diagnosis and inhibition. The nanoparticle was synthesized by click chemistry from Aβ-targeting peptide Ac-LVFFARKC-NH2 (LC8) and an Aβ fluorescent probe f with the zwitterionic copolymer poly(carboxybetaine methacrylate-glycidyl methacrylate) (p(CBMA-GMA), pCG). Owing to the high reactivity of epoxy groups, the peptide concentration of LC8-pCG-fLC8 nanoparticles reached about 4 times higher than that of the existing inhibitor LVFFARK@poly(carboxybetaine) (LK7@pCB). LC8-pCG-fLC8 exhibited remarkable inhibitory capability (suppression efficiency of 83.0% at 20 μM), altered the aggregation pathway of Aβ, and increased the survival rate of amyloid-induced cultured cells from 76.5% to 98.0% at 20 μM. Notably, LC8-pCG-fLC8 possessed excellent binding affinity, good biostability, and high fluorescence responsivity to β-sheet-rich Aβ oligomers and fibrils, which could be used for the early diagnosis of Aβ aggregation. More importantly, in vivo tests using transgenic C. elegans CL2006 stain showed that LC8-pCG-fLC8 could specifically image Aβ plaques, prolong the lifespan (from 13 to 17 days), and attenuate the AD-like symptoms (reducing paralysis and Aβ deposition). Therefore, self-assembled nanoparticles hold great potential in AD theranostics.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
28
|
Hernández-Cruz E, Eugenio-Pérez D, Ramírez-Magaña KJ, Pedraza-Chaverri J. Effects of Vegetal Extracts and Metabolites against Oxidative Stress and Associated Diseases: Studies in Caenorhabditis elegans. ACS OMEGA 2023; 8:8936-8959. [PMID: 36936291 PMCID: PMC10018526 DOI: 10.1021/acsomega.2c07025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Oxidative stress is a natural physiological process where the levels of oxidants, such as reactive oxygen species (ROS) and nitrogen (RNS), exceed the strategy of antioxidant defenses, culminating in the interruption of redox signaling and control. Oxidative stress is associated with multiple pathologies, including premature aging, neurodegenerative diseases, obesity, diabetes, atherosclerosis, and arthritis. It is not yet clear whether oxidative stress is the cause or consequence of these diseases; however, it has been shown that using compounds with antioxidant properties, particularly compounds of natural origin, could prevent or slow down the progress of different pathologies. Within this context, the Caenorhabditis elegans (C. elegans) model has served to study the effect of different metabolites and natural compounds, which has helped to decipher molecular targets and the effect of these compounds on premature aging and some diseases such as neurodegenerative diseases and dyslipidemia. This article lists the studies carried out on C. elegans in which metabolites and natural extracts have been tested against oxidative stress and the pathologies associated with providing an overview of the discoveries in the redox area made with this nematode.
Collapse
Affiliation(s)
- Estefani
Yaquelin Hernández-Cruz
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biological Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Dianelena Eugenio-Pérez
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biochemical Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Karla Jaqueline Ramírez-Magaña
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
- Postgraduate
in Biochemical Sciences, National Autonomous
University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department
of Biology, Faculty of Chemistry, National
Autonomous University of Mexico, Ciudad Universitaria, 04510 Mexico City, Mexico
| |
Collapse
|
29
|
Caenorhabditis elegans as a Model System to Study Human Neurodegenerative Disorders. Biomolecules 2023; 13:biom13030478. [PMID: 36979413 PMCID: PMC10046667 DOI: 10.3390/biom13030478] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
In recent years, advances in science and technology have improved our quality of life, enabling us to tackle diseases and increase human life expectancy. However, longevity is accompanied by an accretion in the frequency of age-related neurodegenerative diseases, creating a growing burden, with pervasive social impact for human societies. The cost of managing such chronic disorders and the lack of effective treatments highlight the need to decipher their molecular and genetic underpinnings, in order to discover new therapeutic targets. In this effort, the nematode Caenorhabditis elegans serves as a powerful tool to recapitulate several disease-related phenotypes and provides a highly malleable genetic model that allows the implementation of multidisciplinary approaches, in addition to large-scale genetic and pharmacological screens. Its anatomical transparency allows the use of co-expressed fluorescent proteins to track the progress of neurodegeneration. Moreover, the functional conservation of neuronal processes, along with the high homology between nematode and human genomes, render C. elegans extremely suitable for the study of human neurodegenerative disorders. This review describes nematode models used to study neurodegeneration and underscores their contribution in the effort to dissect the molecular basis of human diseases and identify novel gene targets with therapeutic potential.
Collapse
|
30
|
Epigallocatechin gallate-derived carbonized polymer dots: A multifunctional scavenger targeting Alzheimer's β-amyloid plaques. Acta Biomater 2023; 157:524-537. [PMID: 36503076 DOI: 10.1016/j.actbio.2022.11.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/14/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
The design of high-efficiency scavengers targeting β-amyloid protein (Aβ) plaques in the progress of Alzheimer's disease (AD) has been recognized as an effective way to prevent and treat AD. Herein, epigallocatechin gallate (EGCG)-derived carbonized polymer dots (E-CPDs) were synthesized for the first time via a hydrothermal method using EGCG, an Aβ inhibitor, as one of the raw materials. The inhibitory efficiency and fluorescent property of E-CPDs were elegantly modulated by adjusting the molar ratio of EGCG to nitrogen-containing dopant, o-phenylenediamine (oPD), and 75E-CPDs fabricated with 75 mM EGCG and 50 mM oPD showed the highest inhibitory capability. The multifunctionality of 75E-CPDs on inhibition of Aβ fibrillization, Aβ fibrils disaggregation, amyloid fluorescent detection, and intracellular reactive oxygen species scavenging was demonstrated. 75E-CPDs inhibited the formation of β-sheet-rich Aβ aggregates, alleviated Aβ-induced cytotoxicity of cultured cells from 47% to 15%, and prolonged the lifespan of AD nematodes by scavenging in vivo amyloid plaques, demonstrating much higher performance than either EGCG or EGCG-free carbon dots. Notably, 75E-CPDs could rapidly disaggregate Aβ fibrils on "second" scale, faster than any other disaggregating agents. The aromatic structure as well as hydroxyl and carboxyl groups existing on 75E-CPDs surface, which would interact with Aβ species via hydrogen bonding, electrostatic interactions, and hydrophobic interactions, played critical roles in their inhibition and disaggregation capabilities. This work reveals that potent CDs can be fabricated by using an Aβ inhibitor as the precursor, providing a new perspective for the design of multifunctional scavengers targeting amyloid plaques. STATEMENT OF SIGNIFICANCE: Alzheimer's disease (AD) is one of the top ten causes of death worldwide and seriously threatens human health. Recently, carbon nanomaterials have attracted much attention because of their good biocompatibility and capability in modulating Aβ aggregation via multiple interactions. This work has for the first time fabricated epigallocatechin gallate-derived carbonized polymer dots (E-CPDs) and revealed the multifunctional potency of E-CPDs on alleviating the multifaced symptoms associated with β-amyloid protein (Aβ) fibrillization in the progression of AD. Notably, E-CPDs exhibited enhanced fluorescence emission upon binding to Aβ fibrils, possessing potential as Aβ fluorescent probes. It is believed that this work would open a new horizon in the design of multifunctional carbon nanomaterials as a potent amyloid scavenger for AD theranostics.
Collapse
|
31
|
Kleawyothatis W, Jattujan P, Chumphoochai K, Chalorak P, Sobhon P, Meemon K. Holothuria scabra extracts confer neuroprotective effect in C. elegans model of Alzheimer's disease by attenuating amyloid-β aggregation and toxicity. J Tradit Complement Med 2023; 13:93-104. [PMID: 36685078 PMCID: PMC9845652 DOI: 10.1016/j.jtcme.2022.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/08/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2022] Open
Abstract
Background and aim Alzheimer's disease (AD) is the most common aged-related neurodegenerative disorder that is associated with the toxic amyloid-β (Aβ) aggregation in the brain. While the efficacies of available drugs against AD are still limited, natural products have been shown to possess neuroprotective potential for prevention and therapy of AD. This study aimed to investigate the neuroprotective effects of H. scabra extracts against Aβ aggregation and proteotoxicity in C. elegans model of Alzheimer's diseases. Experimental procedure Whole bodies (WB) and body wall (BW) of H. scabra were extracted and fractionated into ethyl acetate (WBEA, BWEA), butanol (WBBU, BWBU), and ethanol (BWET). Then C. elegans AD models were treated with these fractions and investigated for Aβ aggregation and polymerization, biochemical and behavioral changes, and level of oxidative stress, as well as lifespan extension. Results and conclusion C. elegans AD model treated with H. scabra extracts, especially triterpene glycoside-rich ethyl acetate and butanol fractions, exhibited significant reduction of Aβ deposition. These H. scabra extracts also attenuated the paralysis behavior and improved the neurological defects in chemotaxis caused by Aβ aggregation. Immunoblot analysis revealed decreased level of Aβ oligomeric forms and the increased level of Aβ monomers after treatments with H. scabra extracts. In addition, H. scabra extracts reduced reactive oxygen species and increased the mean lifespan of the treated AD worms. In conclusion, this study demonstrated strong evidence of anti-Alzheimer effects by H. scabra extracts, implying that these extracts can potentially be applied as natural preventive and therapeutic agents for AD. Taxonomy classification by EVISE Alzheimer's disease, Neurodegenerative disorder, Traditional medicine, Experimental model systems, Molecular biology.
Collapse
Affiliation(s)
- Warannida Kleawyothatis
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Prapaporn Jattujan
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kawita Chumphoochai
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Pawanrat Chalorak
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
- Department of Radiological Technology and Medical Physics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| |
Collapse
|
32
|
Mi L, Fan M, Liu T, Wu D, Wang Y, Li F, Cai Y, Qiu Z, Liu D, Cao L. Ginsenoside Rd protects transgenic Caenorhabditis elegans from β-amyloid toxicity by activating oxidative resistant. Front Pharmacol 2022; 13:1074397. [PMID: 36588689 PMCID: PMC9797510 DOI: 10.3389/fphar.2022.1074397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is a serious public health issue but few drugs are currently available for the disease, and these only target the symptoms. It is well established that oxidative stress plays a crucial role in AD, and there is compelling evidence linking oxidative stress to β-amyloid (Aβ). An exciting source of potential new AD therapeutic medication possibilities is medicinal plants. Ginsenoside Rd (GS-Rd) is one of the main bioactive substances in ginseng extracts. In our study, we used a network pharmacology analysis to identify overlapping GS-Rd (therapeutic) and AD (disease)-relevant protein targets, gene ontology (GO) and bio-process annotation, and the KEGG pathway analysis data predicted that GS-Rd impacts multiple targets and pathways, such as the MAPK signal pathway and the JAT-STAT3 signaling pathway. We then assessed the role of GS-Rd in C. elegans and found that GS-Rd prolongs lifespan, improves resistance to heat stress, delays physical paralysis and increases oxidative stress responses. Overall, these results suggest that GS-Rd protects against the toxicity of Aβ. The RNA-seq analysis revealed that GS-Rd achieves its effects by regulating gene expressions like daf-16 and skn-1, as well as by participating in many AD-related pathways like the MAPK signaling pathway. In addition, in CL4176 worms, GS-Rd decreased reactive oxygen species (ROS) levels and increased SOD activity. Additional research with transgenic worms showed that GS-Rd aided in the movement of DAF-16 from the cytoplasm to the nucleus. Taken together, the results indicate that GS-Rd significantly reduces Aβ aggregation by targeting the MAPK signal pathway, induces nuclear translocation of DAF-16 to activate downstream signaling pathways and increases resistance to oxidative stress in C. elegans to protect against Aβ-induced toxicity.
Collapse
Affiliation(s)
- Lihan Mi
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Meiling Fan
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Tianjia Liu
- Scientific Research Department, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Wang
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Fuqiang Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun, China
| | - Zhidong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,*Correspondence: Lingling Cao, ; Da Liu, ; Zhidong Qiu,
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,*Correspondence: Lingling Cao, ; Da Liu, ; Zhidong Qiu,
| | - Lingling Cao
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China,School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Lingling Cao, ; Da Liu, ; Zhidong Qiu,
| |
Collapse
|
33
|
Kang N, Luan Y, Jiang Y, Cheng W, Liu Y, Su Z, Liu Y, Tan P. Neuroprotective Effects of Oligosaccharides in Rehmanniae Radix on Transgenic Caenorhabditis elegans Models for Alzheimer’s Disease. Front Pharmacol 2022; 13:878631. [PMID: 35784741 PMCID: PMC9247152 DOI: 10.3389/fphar.2022.878631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Rehmanniae Radix (RR, the dried tuberous roots of Rehmannia glutinosa (Gaertn.) DC.) is an important traditional Chinese medicine distributed in Henan, Hebei, Inner Mongolia, and Northeast in China. RR is frequently used to treat diabetes mellitus, cardiovascular disease, osteoporosis and aging-related diseases in a class of prescriptions. The oligosaccharides and catalpol in RR have been confirmed to have neuroprotective effects. However, there are few studies on the anti-Alzheimer’s disease (AD) effect of oligosaccharides in Rehmanniae Radix (ORR). The chemical components and pharmacological effects of dried Rehmannia Radix (DRR) and prepared Rehmannia Radix (PRR) are different because of the different processing methods. ORR has neuroprotective potential, such as improving learning and memory in rats. Therefore, this study aimed to prove the importance of oligosaccharides in DRR (ODRR) and PRR (OPRR) for AD based on the Caenorhabditis elegans (C. elegans) model and the different roles of ODRR and OPRR in the treatment of AD. In this study, we used paralysis assays, lifespan and stress resistance assays, bacterial growth curve, developmental and behavioral parameters, and ability of learning and memory to explore the effects of ODRR and OPRR on anti-AD and anti-aging. Furthermore, the accumulation of reactive oxygen species (ROS); deposition of Aβ; and expression of amy-1, sir-2.1, daf-16, sod-3, skn-1, and hsp-16.2 were analyzed to confirm the efficacy of ODRR and OPRR. OPRR was more effective than ODRR in delaying the paralysis, improving learning ability, and prolonging the lifespan of C. elegans. Further mechanism studies showed that the accumulation of ROS, aggregation, and toxicity of Aβ were reduced, suggesting that ORR alleviated Aβ-induced toxicity, in part, through antioxidant activity and Aβ aggregation inhibiting. The expression of amy-1 was downregulated, and sir-2.1, daf-16, sod-3, and hsp-16.2 were upregulated. Thus, ORR could have a possible therapeutic effect on AD by modulating the expression of amy-1, sir-2.1, daf-16, sod-3, and hsp-16.2. Furthermore, ORR promoted the nuclear localization of daf-16 and further increased the expression of sod-3 and hsp-16.2, which significantly contributed to inhibiting the Aβ toxicity and enhancing oxidative stress resistance. In summary, the study provided a new idea for the development of ORR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Tan
- *Correspondence: Yonggang Liu, ; Peng Tan,
| |
Collapse
|