1
|
Moradi Khankani A, Hossein Meftahi G. Pretreatment with 4-methylumbilliferon improves anxiety-like behaviors and memory impairment in stressed rats via modulation of neuronal cell death and oxidative stress. Brain Res 2024; 1844:149196. [PMID: 39181223 DOI: 10.1016/j.brainres.2024.149196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
This work was done to investigate the ameliorating impact of 4-methylumbilliferon (4-MU) on spatial learning and memory dysfunction and restraint stress (STR)-induced anxiety-like behaviors in male Wistar rats and the underlying mechanisms. Thirty-two animals were assigned into 4 cohorts: control, 4-MU, STR, and STR+4-MU. Animals were exposed to STR for 4 h per day for 14 consecutive days or kept in normal conditions (healthy animals without exposure to stress). 4-MU (25 mg/kg) was intraperitoneally administered once daily to STR rats before restraint stress for 14 consecutive days. The behavioral tests were performed through Morris water maze tests and elevated-plus maze to examine learning/memory function, and anxiety levels, respectively. The levels of the antioxidant defense biomarkers (GPX, SOD) and MDA as an oxidant molecule in the brain tissues were measured using commercial ELISA kits. Neuronal loss or density of neurons was evaluated using Nissl staining. STR exposure could cause significant alterations in the levels of the antioxidant defense biomarkers (MDA, GPX, and SOD) in the prefrontal cortex and hippocampus, induce anxiety, and impair spatial learning and memory function. Treatment with 4-MU markedly reduced anxiety levels and improved spatial learning and memory dysfunction via restoring the antioxidant defense biomarkers to normal values and reducing MDA levels. Moreover, more intact cells with normal morphologies were detected in STR-induced animals treated with 4-MU. 4-MU could attenuate the STR-induced anxiety-like behaviors and spatial learning and memory dysfunction by reducing oxidative damage and neuronal loss in the prefrontal cortex and hippocampus region. Taken together, our findings provide new insights regarding the potential therapeutic effects of 4-MU against neurobehavioral disorders induced by STR.
Collapse
Affiliation(s)
| | - Gholam Hossein Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Mirshekari Jahangiri H, Moradi A, Nazarinia D, Aboutaleb N. 4-methylumbilliferon (4-MU) as a Potential Treatment Against Cerebral ischemia and Reperfusion Injury in Rats; An Experimental Study. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2024; 13:e8. [PMID: 39465056 PMCID: PMC11512716 DOI: 10.22037/aaem.v13i1.2456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Introduction Ischemic stroke (IS) is one of the three main fatal disorders and is a major health challenge. 4-methylumbelliferone (4-MU) is one of the coumarin derivatives (7-hydroxy-4-methylcoumarin) with antioxidant and anti-inflammatory impact. This study was conducted to elucidate the neuroprotective effects and anti-inflammatory impact of 4-MU in a rodent model of IS. Methods The IS model was induced by middle cerebral artery occlusion (MCAO) for 1 hour and reperfusion was established for 24 hours. 44 Male Wistar rats were divided into four groups: 1) Sham, 2) MCAO, 3) MCAO + Vehicle, and 4) MCAO + 4-MU (25 mg/kg). Evaluation of neurological deficit was performed using Garcia's score. 2,3,5-triphenoyl-2H-tetrazolium chloride (TTC) staining was employed to measure infarct size. Nissl staining was applied to determine neuronal loss. Moreover, western blotting was utilized to detect the expression of the proteins relevant to the TLR4/NF-κB/NLRP3 axis (p-NF-κB p65, TLR4, NLRP3, IL-1β, IL-10, IL-18, ASC, and Caspase-1). Results It was observed that MCAO caused neurological deficit (P<0.0001), infarct (P<0.0001), and neuronal loss (P<0.002); up-regulated NLRP3 (P<0.0001), TLR4 (P<0.0001), p-NF-κB p65 (P<0.0005), IL-1β (P<0.0014), IL-18 (P<0.0001), ASC (P<0.0027), and Caspase-1 (P<0.0052); and reduced IL-10 concentrations (P<0.0024). Administration of 4-MU (25 mg/kg) quickly after reperfusion reduced neurological deficit (P<0.0001), infarct size (P<0.0001), neuronal loss (P<0.0058), and down-regulated NLRP3 (P<0.0257), TLR4 (P<0.0001), p-NF-κB p65 (P<0.0075), IL-1β (P<0.0106), IL-18 (P<0.0005), ASC (P<0.0072), and Caspase-1 (P<0.0315), and increased IL-10 concentrations (P<0.0215). Conclusion These results indicate that 4-MU can attenuate injury after MCAO by suppressing the TLR4/NF-κB/NLRP3 axis. Our findings show that 4-MU can be considered a novel therapeutic compound to cure IS.
Collapse
Affiliation(s)
- Hamzeh Mirshekari Jahangiri
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Donya Nazarinia
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Nahid Aboutaleb
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Sankararaman S, Freeman AJ. Early detection of hepatobiliary involvement in cystic fibrosis: Biomarkers, radiologic methods, and genetic influences. Pediatr Pulmonol 2024; 59 Suppl 1:S107-S114. [PMID: 39105338 DOI: 10.1002/ppul.26892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 08/07/2024]
Abstract
Cystic fibrosis-related hepatobiliary involvement (CFHBI) is a term used to describe a spectrum of hepatobiliary involvement ranging from a transient elevation of transaminase levels to advanced cystic fibrosis-associated liver disease (aCFLD). While CFHBI is common among people with cystic fibrosis (PwCF), aCFLD is rare impacting only approximately 5%-10% of the CF population. After respiratory/cardiorespiratory issues and transplant-related complications, aCFLD is now the 4th leading cause of mortality among PwCF. Additionally, aCFLD is an independent predictor of all-cause mortality and is associated with significant morbidity. Despite this recognition, our ability to predict those patients at greatest risk for aCFLD, identify early aCFLD, and monitor the incremental progression of CFHBI is lacking. Here, we review the strengths and weaknesses of the common biomarkers and imaging modalities used in the evaluation and monitoring of CFHBI, as well as the current understanding of genetic modifiers related to aCFLD.
Collapse
Affiliation(s)
- Senthilkumar Sankararaman
- Division of Pediatric Gastroenterology, Hepatology & Nutrition, UH Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
- Case Western Reserve University SOM, Cleveland, Ohio, USA
| | - A Jay Freeman
- Division of Pediatric Gastroenterology, Hepatology & Nutrition, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
4
|
Moradi A, Aslani MR, Mirshekari Jahangiri H, Naderi N, Aboutaleb N. Protective effects of 4-methylumbelliferone on myocardial ischemia/reperfusion injury in rats through inhibition of oxidative stress and downregulation of TLR4/NF-κB/NLRP3 signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5015-5027. [PMID: 38183448 DOI: 10.1007/s00210-023-02934-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Myocardial ischemia-reperfusion injury (MI/R) has been found to be one of the important risk factors for global cardiac mortality and morbidity. The study was conducted to inquire into the protective effect of 4-methylumbilliferon (4-MU) against MI/R in rats and clarify its potential underlying mechanism. Animals were divided into four groups (n = 15) including sham, MI/R, MI/R + vehicle, and MI/R + 4-MU. MI/R was established in Wistar rats by occluding the left anterior descending (LAD) coronary artery for 30 min. 4-MU (25 mg/kg) was injected intraperitoneally before the induction of reperfusion. Cardiac function, fibrosis, oxidant/antioxidant markers, and inflammatory cytokines were evaluated using echocardiography, ELISA, and Western blot assay. As a result of MI/R induction, a decrease in left ventricular contractile function occurred along with increased cardiac fibrosis and tissue damage. The serum levels of TNF-α, IL-1β, and IL-18 increased, while IL-10 decreased. Oxidant/antioxidant changes were evident with increased MDA levels and decreased GSH, SOD, and CAT in the MI/R group. Furthermore, the protein levels of TLR4, NF-κB, and NLRP3 were significantly increased in the heart tissue of MI/R group. Treatment with 4-MU significantly prevented the reduction of cardiac contractile function and its pathological changes as a result of MI/R by inhibiting the increase of serum inflammatory factors and improving the oxidant/antioxidant balance probably through the TLR4/NF-κB/NLRP3 axis. The results of a current study showed that 4-MU had a potential ability to attenuate the cardiac injury by reducing oxidative stress and inflammation in a TLR4/NF-κB/NLRP3-dependent mechanism.
Collapse
Affiliation(s)
- Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Aslani
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamzeh Mirshekari Jahangiri
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Naderi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Zhu H, Sharma AK, Aguilar K, Boghani F, Sarcan S, George M, Ramesh J, Van Der Eerden J, Panda CS, Lopez A, Zhi W, Bollag R, Patel N, Klein K, White J, Thangaraju M, Lokeshwar BL, Singh N, Lokeshwar VB. Simple virus-free mouse models of COVID-19 pathologies and oral therapeutic intervention. iScience 2024; 27:109191. [PMID: 38433928 PMCID: PMC10906509 DOI: 10.1016/j.isci.2024.109191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
The paucity of preclinical models that recapitulate COVID-19 pathology without requiring SARS-COV-2 adaptation and humanized/transgenic mice limits research into new therapeutics against the frequently emerging variants-of-concern. We developed virus-free models by C57BL/6 mice receiving oropharyngeal instillations of a SARS-COV-2 ribo-oligonucleotide common in all variants or specific to Delta/Omicron variants, concurrently with low-dose bleomycin. Mice developed COVID-19-like lung pathologies including ground-glass opacities, interstitial fibrosis, congested alveoli, and became moribund. Lung tissues from these mice and bronchoalveolar lavage and lung tissues from patients with COVID-19 showed elevated levels of hyaluronic acid (HA), HA-family members, an inflammatory signature, and immune cell infiltration. 4-methylumbelliferone (4-MU), an oral drug for biliary-spasm treatment, inhibits HA-synthesis. At the human equivalent dose, 4-MU prevented/inhibited COVID-19-like pathologies and long-term morbidity; 4-MU and metabolites accumulated in mice lungs. Therefore, these versatile SARS-COV-2 ribo-oligonucleotide oropharyngeal models recapitulate COVID-19 pathology, with HA as its critical mediator and 4-MU as a potential therapeutic for COVID-19.
Collapse
Affiliation(s)
- Huabin Zhu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Anuj K. Sharma
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Karina Aguilar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Faizan Boghani
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Semih Sarcan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Michelle George
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Janavi Ramesh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Joshua Van Der Eerden
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Chandramukhi S. Panda
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Aileen Lopez
- Clinical Trials Office, Augusta University, 1521 Pope Avenue, Augusta, GA 30912, USA
| | - Wenbo Zhi
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Roni Bollag
- Department of Pathology and Biorepository Alliance of Georgia, Medical College of Georgia, Augusta University, 1120 15th St, Augusta, GA 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Nikhil Patel
- Department of Pathology and Biorepository Alliance of Georgia, Medical College of Georgia, Augusta University, 1120 15th St, Augusta, GA 30912, USA
| | - Kandace Klein
- Department of Radiology and Imaging, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Joe White
- Department of Pathology and Biorepository Alliance of Georgia, Medical College of Georgia, Augusta University, 1120 15th St, Augusta, GA 30912, USA
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Bal L. Lokeshwar
- Georgia Cancer Center, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Vinata B. Lokeshwar
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Ivermectin Affects Neutrophil-Induced Inflammation through Inhibition of Hydroxylysine but Stimulation of Cathepsin G and Phenylalanine Secretion. Biomedicines 2022; 10:biomedicines10123284. [PMID: 36552040 PMCID: PMC9775137 DOI: 10.3390/biomedicines10123284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The invasion and integrin-dependent adhesion of neutrophils to lung tissues and their secretion lead to the development of pneumonia in various pulmonary pathologies, including acute respiratory distress syndrome in coronavirus disease. We studied the effect of ivermectin, a possible therapeutic agent for inflammation and cancer, on integrin-dependent neutrophil adhesion to fibronectin and the concomitant secretion. Ivermectin did not affect the attachment of neutrophils to the substrate and the reactive oxygen species production but sharply inhibited the adhesion-induced release of hydroxylysine and stimulated the release of phenylalanine and cathepsin G. Hydroxylysine is a product of lysyl hydroxylase, which is overexpressed in tumor cells with an increased ability to invade and metastasize. The inhibition of hydroxylysine release by ivermectin, by analogy, may indicate the suppression of neutrophil invasion into tissue. The increase in the release of phenylalanine in our experiments coincided with the secretion of cathepsin G, which indicates the possible role of this enzyme in the cleavage of phenylalanine. What is the substrate in such a reaction is unknown. We demonstrated that exogenously added angiotensin II (1-8) can serve as a substrate for phenylalanine cleavage. Mass spectrometry revealed the formation of angiotensin II (1-7) in the secretion of neutrophils, which attached to fibronectin in the presence of ivermectin and exogenous angiotensin II (1-8), indicating a possible involvement of ivermectin in the inactivation of angiotensin II.
Collapse
|