1
|
Rastogi K, Weerts EM, Ellis JD. Oxytocin as a treatment for alcohol use disorder and heavy drinking: A narrative review. Exp Clin Psychopharmacol 2024; 32:625-638. [PMID: 39298263 PMCID: PMC11995404 DOI: 10.1037/pha0000741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Oxytocin is increasingly being studied for treating symptoms of alcohol use disorders and heavy drinking behavior. The neuropeptide oxytocin facilitates social relationships and modulates the body's stress response by strengthening coping mechanisms and reducing anxiety. Relatedly, oxytocin is also thought to play a role in processes associated with craving and withdrawal from alcohol. This review aims to primarily provide an overview of preclinical and clinical literature on the applications of oxytocin in alcohol use, and additionally discuss a framework for types of trials and the variety of parameters that affect different study designs. A review of the existing literature in this area suggests that while low dosages of oxytocin do not affect drinking behavior and tolerance, higher dosages taken prior to alcohol exposure have varying behavioral and physiological results. Depending on quantity and timing, oxytocin treatments resulted in declines in withdrawal symptoms and alcohol self-administration in preclinical studies and may decrease neural cue reactivity and withdrawal symptoms in clinical studies. Current ongoing trials are expanding on this work to thoroughly explore clinical applications of oxytocin. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Kriti Rastogi
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health
| | - Elise M Weerts
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine
| | - Jennifer D Ellis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine
| |
Collapse
|
2
|
Morel C, Paoli J, Camonin C, Marchal N, Grova N, Schroeder H. Comparison of predictive validity of two autism spectrum disorder rat models: Behavioural investigations. Neurotoxicology 2024; 103:39-49. [PMID: 38761921 DOI: 10.1016/j.neuro.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The valproic acid model has been shown to reproduce ASD-like behaviours observed in patients and is now widely validated for construct, face, and predictivity as ASD model in rat. The literature agrees on using a single exposition to 500 mg/kg of VPA at gestational day 12 to induce ASD phenotype with the intraperitoneal route being the most commonly used. However, some studies validated this model with repeated exposure by using oral route. The way of administration may be of great importance in the induction of the ASD phenotype and a comparison is greatly required. We compared two ASD models, one induced by a unique IP injection of 500 mg/kg of body weight at GD12 and the other one by repeated PO administration of 500 mg/kg of body weight/day between GD11 and GD13. The behavioural phenotypes of the offspring were assessed for the core signs of ASD (impaired social behaviour, stereotypical/repetitive behaviours, sensory/communication deficits) as well as anxiety as comorbidity, at developmental and juvenile stages in both sexes. The VPA IP model induced a more literature-compliant ASD phenotype than the PO one. These results confirmed that the mode of administration as well as the window of VPA exposure are key factors in the ASD-induction phenotype. Interestingly, the effects of VPA administration were similar at the developmental stage between both sexes and then tended to differ later in life.
Collapse
Affiliation(s)
- C Morel
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, Vandœuvre-lès-Nancy 54506, France; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS) - University of Lorraine, B.P. 184, Nancy 54511, France
| | - J Paoli
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, Vandœuvre-lès-Nancy 54506, France; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS) - University of Lorraine, B.P. 184, Nancy 54511, France
| | - C Camonin
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, Vandœuvre-lès-Nancy 54506, France
| | - N Marchal
- UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS) - University of Lorraine, B.P. 184, Nancy 54511, France
| | - N Grova
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, Vandœuvre-lès-Nancy 54506, France; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS) - University of Lorraine, B.P. 184, Nancy 54511, France; Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity-Luxembourg Institute of Health, 29 rue Henri Koch, Esch-Sur-Alzette L-4354, Luxembourg.
| | - H Schroeder
- Calbinotox, Faculty of Science and Technology, University of Lorraine, Campus Aiguillettes, B.P. 70239, Vandœuvre-lès-Nancy 54506, France
| |
Collapse
|
3
|
Vörös D, Kiss O, Taigiszer M, László BR, Ollmann T, Péczely L, Zagorácz O, Kertes E, Kállai V, Berta B, Kovács A, Karádi Z, Lénárd L, László K. The role of intraamygdaloid oxytocin in spatial learning and avoidance learning. Peptides 2024; 175:171169. [PMID: 38340898 DOI: 10.1016/j.peptides.2024.171169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The goal of the present study is to investigate the role of intraamygdaloid oxytocin in learning-related mechanisms. Oxytocin is a neuropeptide which is involved in social bonding, trust, emotional responses and various social behaviors. By conducting passive avoidance and Morris water maze tests on male Wistar rats, the role of intraamygdaloid oxytocin in memory performance and learning was investigated. Oxytocin doses of 10 ng and 100 ng were injected into the central nucleus of the amygdala. Our results showed that 10 ng oxytocin significantly reduced the time required to locate the platform during the Morris water maze test while significantly increasing the latency time in the passive avoidance test. However, the 100 ng oxytocin experiment failed to produce a significant effect in either of the tests. Wistar rats pretreated with 20 ng oxytocin receptor antagonist (L-2540) were administered 10 ng of oxytocin into the central nucleus of the amygdala and were also subjected to the aforementioned tests to highlight the role of oxytocin receptors in spatial- and avoidance learning. Results suggest that oxytocin supports memory processing during both the passive avoidance and the Morris water maze tests. Oxytocin antagonists can however block the effects of oxytocin in both tests. The results substantiate that oxytocin uses oxytocin receptors to enhance memory and learning performance.
Collapse
Affiliation(s)
- Dávid Vörös
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Orsolya Kiss
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Márton Taigiszer
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Bettina Réka László
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
| | - Tamás Ollmann
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - László Péczely
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Olga Zagorácz
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Erika Kertes
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Veronika Kállai
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Beáta Berta
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Anita Kovács
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
| | - Zoltán Karádi
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Cellular Bioimpedance Research Group, Szentágothai Research Center, University of Pécs, 7602 Pécs, Hungary; Molecular Endocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, 7602 Pécs, Hungary
| | - László Lénárd
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Molecular Endocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, 7602 Pécs, Hungary
| | - Kristóf László
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary.
| |
Collapse
|
4
|
Vörös D, Kiss O, Ollmann T, Mintál K, Péczely L, Zagoracz O, Kertes E, Kállai V, László BR, Berta B, Toth A, Lénárd L, László K. Intraamygdaloid Oxytocin Increases Time Spent on Social Interaction in Valproate-Induced Autism Animal Model. Biomedicines 2023; 11:1802. [PMID: 37509444 PMCID: PMC10376246 DOI: 10.3390/biomedicines11071802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder that affects about 1.5% of children worldwide. One of the core symptoms is impaired social interaction. Since proper treatment has not been found yet, an investigation of the exact pathophysiology of autism is essential. The valproate (VPA)-induced rat model can be an appropriate way to study autism. Oxytocin (OT) may amend some symptoms of ASD since it plays a key role in developing social relationships. In the present study, we investigated the effect of the intraamygdaloid OT on sham and intrauterine VPA-treated rats' social interaction using Crawley's social interaction test. Bilateral guide cannulae were implanted above the central nucleus of the amygdala (CeA), and intraamygdaloid microinjections were carried out before the test. Our results show that male Wistar rats prenatally exposed to VPA spent significantly less time on social interaction. Bilateral OT microinjection increased the time spent in the social zone; it also reached the level of sham-control animals. OT receptor antagonist blocked this effect of the OT but in itself did not significantly influence the behavior of the rats. Based on our results, we can establish that intraamygdaloid OT has significantly increased time spent on social interaction in the VPA-induced autism model, and its effect is receptor-specific.
Collapse
Affiliation(s)
- Dávid Vörös
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Orsolya Kiss
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Tamás Ollmann
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Kitti Mintál
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Cellular Bioimpedance Research Group, Szentágothai Research Center, University of Pécs, 7602 Pécs, Hungary
| | - László Péczely
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Olga Zagoracz
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Erika Kertes
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Veronika Kállai
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Bettina Réka László
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
| | - Beáta Berta
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Attila Toth
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Cellular Bioimpedance Research Group, Szentágothai Research Center, University of Pécs, 7602 Pécs, Hungary
| | - László Lénárd
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Molecular Endocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, 7602 Pécs, Hungary
| | - Kristóf László
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
| |
Collapse
|
5
|
Barzegari A, Mahdirejei HA, Hanani M, Esmaeili MH, Salari AA. Adolescent swimming exercise following maternal valproic acid treatment improves cognition and reduces stress-related symptoms in offspring mice: Role of sex and brain cytokines. Physiol Behav 2023; 269:114264. [PMID: 37295664 DOI: 10.1016/j.physbeh.2023.114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Valproic acid (VPA) treatment during pregnancy is a risk factor for developing autism spectrum disorder, cognitive deficits, and stress-related disorders in children. No effective therapeutic strategies are currently approved to treat or manage core symptoms of autism. Active lifestyles and physical activity are closely associated with health and quality of life during childhood and adulthood. This study aimed to evaluate whether swimming exercise during adolescence can prevent the development of cognitive dysfunction and stress-related disorders in prenatally VPA-exposed mice offspring. Pregnant mice received VPA, afterwards, offspring were subjected to swimming exercise. We assessed neurobehavioral performances and inflammatory cytokines (interleukin-(IL)6, tumor-necrosis-factor-(TNF)α, interferon-(IFN)γ, and IL-17A) in the hippocampus and prefrontal cortex of offspring. Prenatal VPA treatment increased anxiety-and anhedonia-like behavior and decreased social behavior in male and female offspring. Prenatal VPA exposure also increased behavioral despair and reduced working and recognition memory in male offspring. Although prenatal VPA increased hippocampal IL-6 and IFN-γ, and prefrontal IFN-γ and IL-17 in males, it only increased hippocampal TNF-α and IFN-γ in female offspring. Adolescent exercise made VPA-treated male and female offspring resistant to anxiety-and anhedonia-like behavior in adulthood, whereas it only made VPA-exposed male offspring resistant to behavioral despair, social and cognitive deficits in adulthood. Exercise reduced hippocampal IL-6, TNF-α, IFN-γ, and IL-17, and prefrontal IFN-γ and IL-17 in VPA-treated male offspring, whereas it reduced hippocampal TNF-α and IFN-γ in VPA-treated female offspring. This study suggests that adolescent exercise may prevents the development of stress-related symptoms, cognitive deficits, and neuroinflammation in prenatally VPA-exposed offspring mice.
Collapse
Affiliation(s)
- Ali Barzegari
- Department of Exercise Physiology, Payame Noor University (PNU), Tehran, Iran
| | | | - Masoumeh Hanani
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kish International Campus, University of Tehran, Kish, Iran
| | | | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Atia AA, Ashour RH, Zaki MM, Rahman KM, Ramadan NM. The comparative effectiveness of metformin and risperidone in a rat model of valproic acid-induced autism, Potential role for enhanced autophagy. Psychopharmacology (Berl) 2023; 240:1313-1332. [PMID: 37133558 PMCID: PMC10172247 DOI: 10.1007/s00213-023-06371-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/25/2023] [Indexed: 05/04/2023]
Abstract
RATIONALE Risperidone is the first antipsychotic to be approved by Food and Drug Administration (FDA) for treating autism spectrum disorder (ASD). The potential efficacy of metformin in preventing and/or controlling ASD behavioral deficits was also recently reported. Suppression of hippocampus autophagy was suggested as a potential pathologic mechanism in ASD. OBJECTIVES Is metformin's ability to improve ASD clinical phenotype driven by its autophagy-enhancing properties? And does hippocampus autophagy enhancement underlie risperidone's efficacy as well? Both questions are yet to be answered. METHODS The effectiveness of metformin on alleviation of ASD-like behavioral deficits in adolescent rats exposed prenatally to valproic acid (VPA) was compared to that of risperidone. The potential modulatory effects of risperidone on hippocampal autophagic activity were also assessed and compared to those of metformin. RESULTS Male offspring exposed to VPA during gestation exhibited marked anxiety, social impairment and aggravation of stereotyped grooming; such deficits were efficiently rescued by postnatal risperidone or metformin therapy. This autistic phenotype was associated with suppressed hippocampal autophagy; as evidenced by reduced gene/dendritic protein expression of LC3B (microtubule-associated proteins 1 light chain 3B) and increased somatic P62 (Sequestosome 1) protein aggregates. Interestingly, compared to risperidone, the effectiveness of metformin in controlling ASD symptoms and improving hippocampal neuronal survival was well correlated to its ability to markedly induce pyramidal neuronal LC3B expression while lowering P62 accumulation. CONCLUSIONS Our work highlights, for the first time, positive modulation of hippocampus autophagy as potential mechanism underlying improvements in autistic behaviors, observed with metformin, as well as risperidone, therapy.
Collapse
Affiliation(s)
- Amany Aa Atia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, 60 El-Gomhoria Street, Mansoura, Al-Dakahlia, 35516, Egypt
| | - Rehab H Ashour
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, 60 El-Gomhoria Street, Mansoura, Al-Dakahlia, 35516, Egypt
| | - Marwa Maf Zaki
- Department of Pathology, Faculty of Medicine, Mansoura University, 60 El-Gomhoria Street, Mansoura, Al-Dakahlia, 35516, Egypt
| | - Karawan Ma Rahman
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, 60 El-Gomhoria Street, Mansoura, Al-Dakahlia, 35516, Egypt
| | - Nehal M Ramadan
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, 60 El-Gomhoria Street, Mansoura, Al-Dakahlia, 35516, Egypt.
| |
Collapse
|
7
|
The Role of Intraamygdaloid Oxytocin and D2 Dopamine Receptors in Reinforcement in the Valproate-Induced Autism Rat Model. Biomedicines 2022; 10:biomedicines10092309. [PMID: 36140411 PMCID: PMC9496370 DOI: 10.3390/biomedicines10092309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
Abstract
Background: autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting around 1 out of 68 children and its incidence shows an increasing tendency. There is currently no effective treatment for ASD. In autism research, the valproate (VPA)-induced autism rodent model is widely accepted. Our previous results showed that intraamygdaloid oxytocin (OT) has anxiolytic effects on rats showing autistic signs under the VPA-induced autism model. Methods: rats were stereotaxically implanted with guide cannulae bilaterally and received intraamygdaloid microinjections. In the present study, we investigated the possible role of intraamygdaloid OT and D2 dopamine (DA) receptors on reinforcement using VPA-treated rats in a conditioned place preference test. OT and/or an OT receptor antagonist or a D2 DA antagonist were microinjected into the central nucleus of the amygdala (CeA). Results: valproate-treated rats receiving 10 ng OT spent significantly longer time in the treatment quadrant during the test session of the conditioned place preference test. Prior treatment with an OT receptor antagonist or with a D2 DA receptor antagonist blocked the positive reinforcing effects of OT. The OT receptor antagonist or D2 DA antagonist in themselves did not influence the time rats spent in the treatment quadrant. Conclusions: Our results show that OT has positive reinforcing effects under the VPA-induced autism rodent model and these effects are OT receptor-specific. Our data also suggest that the DAergic system plays a role in the positive reinforcing effects of OT because the D2 DA receptor antagonist can block these actions.
Collapse
|
8
|
Clarke L, Zyga O, Pineo-Cavanaugh PL, Jeng M, Fischbein NJ, Partap S, Katznelson L, Parker KJ. Socio-behavioral dysfunction in disorders of hypothalamic-pituitary involvement: The potential role of disease-induced oxytocin and vasopressin signaling deficits. Neurosci Biobehav Rev 2022; 140:104770. [PMID: 35803395 PMCID: PMC10999113 DOI: 10.1016/j.neubiorev.2022.104770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/16/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
Disorders involving hypothalamic and pituitary (HPIT) structures-including craniopharyngioma, Langerhans cell histiocytosis, and intracranial germ cell tumors-can disrupt brain and endocrine function. An area of emerging clinical concern in patients with these disorders is the co-occurring socio-behavioral dysfunction that persists after standard hormone replacement therapy. Although the two neuropeptides most implicated in mammalian social functioning (oxytocin and arginine vasopressin) are of hypothalamic origin, little is known about how disease-induced damage to HPIT structures may disrupt neuropeptide signaling and, in turn, impact patients' socio-behavioral functioning. Here we provide a clinical primer on disorders of HPIT involvement and a review of neuropeptide signaling and socio-behavioral functioning in relevant animal models and patient populations. This collective evidence suggests that neuropeptide signaling disruptions contribute to socio-behavioral deficits experienced by patients with disorders of HPIT involvement. A better understanding of the biological underpinnings of patients' socio-behavioral symptoms is now needed to enable the development of the first targeted pharmacological strategies by which to manage patients' socio-behavioral dysfunction.
Collapse
Affiliation(s)
- Lauren Clarke
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, MSLS P-104, Stanford, CA 94305, USA
| | - Olena Zyga
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, MSLS P-104, Stanford, CA 94305, USA
| | - Psalm L Pineo-Cavanaugh
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, MSLS P-104, Stanford, CA 94305, USA
| | - Michael Jeng
- Department of Pediatrics (Hematology/Oncology Division), Stanford University, 1000 Welch Road, Suite 300, Palo Alto, CA 94304, USA
| | - Nancy J Fischbein
- Department of Radiology, Stanford University, 450 Quarry Rd, Suite 5659, Palo Alto, CA 94304, USA
| | - Sonia Partap
- Department of Neurology and Neurological Sciences (Child Neurology Division), Stanford University, 750 Welch Road, Suite 317, Palo Alto, CA 94304, USA
| | - Laurence Katznelson
- Departments of Neurosurgery and Medicine (Endocrinology Division), Stanford University, 875 Blake Wilbur Drive, Stanford, CA 94305, USA
| | - Karen J Parker
- Department of Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, MSLS P-104, Stanford, CA 94305, USA; Department of Comparative Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|