1
|
Wang Z, Chen G, Li H, Liu J, Yang Y, Zhao C, Li Y, Shi J, Chen H, Chen G. Zotarolimus alleviates post-trabeculectomy fibrosis via dual functions of anti-inflammation and regulating AMPK/mTOR axis. Int Immunopharmacol 2024; 142:113176. [PMID: 39303539 DOI: 10.1016/j.intimp.2024.113176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE Postoperative scar formation is the primary cause of uncontrolled intraocular pressure following trabeculectomy failure. This study aimed to evaluate the efficacy of zotarolimus as an adjuvant anti-scarring agent in the experimental trabeculectomy. METHODS We performed differential gene and Gene Ontology enrichment analysis on rabbit follicular transcriptome sequencing data (GSE156781). New Zealand white Rabbits were randomly assigned into three groups: Surgery only, Surgery with mitomycin-C treatment, Surgery with zotarolimus treatment. Rabbits were euthanized 3 days or 28 days post-trabeculectomy. Pathological sections were analyzed using immunohistochemistry, immunofluorescence, and Masson staining. In vitro, primary human tenon's capsule fibroblasts (HTFs) were stimulated by transforming growth factor-β1 (TGF-β1) and treated with either mitomycin-C or zotarolimus. Cell proliferation and migration were evaluated using cell counting kit-8, cell cycle, and scratch assays. Mitochondrial membrane potential was detected with the JC-1 probe, and reactive oxygen species were detected using the DCFH-DA probe. RNA and protein expressions were quantified using RT-qPCR and immunofluorescence. RESULTS Transcriptome sequencing analysis revealed the involvement of complex immune factors and metabolic disorders in trabeculectomy outcomes. Zotarolimus effectively inhibited fibrosis, reduced proinflammatory factor release and immune cell infiltration, and improved the surgical outcomes of trabeculectomy. In TGF-β1-induced HTFs, zotarolimus reduced fibrosis, proliferation, and migration without cytotoxicity via the dual regulation of the TGF-β1/Smad2/3 and AMPK/AKT/mTOR pathways. CONCLUSION Our study demonstrates that zotarolimus mitigates fibrosis by reducing immune infiltration and correcting metabolic imbalances, offering a potential treatment for improving trabeculectomy surgical outcomes.
Collapse
Affiliation(s)
- Zhiruo Wang
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Gong Chen
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Haoyu Li
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingyuan Liu
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yuanyuan Yang
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Cong Zhao
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yunping Li
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingming Shi
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Huihui Chen
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China; Clinical Immunology Research Center of Central South University, Changsha, China.
| | - Guochun Chen
- Clinical Immunology Research Center of Central South University, Changsha, China; Department of Nephrology, the Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
2
|
Yin H, Tang Y, Wang Y, Waheed YA, Wang D, Sun D. Correlation between pre-operative VE-cadherin and DLL4 and the maturation after primary arteriovenous fistula in uremic patients. PeerJ 2024; 12:e18356. [PMID: 39583102 PMCID: PMC11585290 DOI: 10.7717/peerj.18356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 11/26/2024] Open
Abstract
Aims Uremic patients require dialysis to replace the declined kidney function, and arteriovenous fistula (AVF) is a commonly used dialysis access route. Our study aimed to explore vascular endothelial cells cadherin (VE-cadherin) and Delta-like ligand 4 (DLL4) expression in uremic patients undergoing primary AVF surgery and their correlation with AVF maturation. Methods We conducted a prospective study that included n = 55 voluntary uremic patients receiving their initial AVF procedure for renal replacement therapy, subjects were divided into a mature group and a failure group based on whether the AVF matured within 3 months post-operatively. We analyzed the association of VE-cadherin and DLL4 with AVF maturation by examining their expression levels in serum and the endothelium of cephalic veins. Results Pre-operative serum VE-cadherin, in the mature group measured 125.07 (106.77-167.65) ng/L, and DLL4 was 92.78 (83.83-106.72) pg/mL, while the failure group had VE-cadherin at 95.40 (79.03-107.16) ng/L (P = 0.001), and DLL4 at 60.42 (43.98-80.15) pg/mL with a statistical significant; (P = 0.002), binary logistic regression analysis indicated a significant association between cephalic vein diameter, VE-cadherin, DLL4 levels, and AVF immaturity (P = 0.024, P = 0.014 respectively). Immunohistochemical staining showed slightly higher VE-cadherin levels in the mature group than in the failure group (P = 0.366). DLL4 was primarily located in the cell membrane and cytoplasm, concentrated in the inner membrane, with significantly higher levels in the mature group compared to the failure group (P = 0.027). Conclusion The failure group exhibited lower levels of VE-cadherin and DLL4 in serum and vascular tissue, these results suggest that VE-cadherin and DLL4 might play pivotal regulatory roles in the onset and the progression of fistula immaturity, potentially serving as promising targets for future interventions.
Collapse
Affiliation(s)
- Huanhuan Yin
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yifan Tang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yanping Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | | | - Disheng Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Internal Medicine and Diagnostics, Xuzhou Medical College, Xuzhou, China
- Clinical Research Center for Kidney Disease, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
Kane J, Lemieux A, Baranwal G, Misra S. The Role of Cardio-Renal Inflammation in Deciding the Fate of the Arteriovenous Fistula in Haemodialysis Therapy. Cells 2024; 13:1637. [PMID: 39404400 PMCID: PMC11475948 DOI: 10.3390/cells13191637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Vascular access is an indispensable component of haemodialysis therapy for end-stage kidney disease patients. The arteriovenous fistula (AVF) is most common, but importantly, two-year failure rates are greater than fifty percent. AVF failure can occur due to a lack of suitable vascular remodelling, and inappropriate inflammation preventing maturation, or alternatively neointimal hyperplasia and vascular stenosis preventing long-term use. A comprehensive mechanistic understanding of these processes is still lacking, but recent studies highlight an essential role for inflammation from uraemia and the AVF itself. Inflammation affects each cell in the cascade of AVF failure, the endothelium, the infiltrating immune cells, and the vascular smooth muscle cells. This review examines the role of inflammation in each cell step by step and the influence on AVF failure. Inflammation resulting in AVF failure occurs initially via changes in endothelial cell activation, permeability, and vasoprotective chemokine secretion. Resultingly, immune cells can extravasate into the subendothelial space to release inflammatory cytokines and cause other deleterious changes to the microenvironment. Finally, all these changes modify vascular smooth muscle cell function, resulting in excessive and unchecked hyperplasia and proliferation, eventually leading to stenosis and the failure of the AVF. Finally, the emerging therapeutic options based off these findings are discussed, including mesenchymal stem cells, small-molecule inhibitors, and far-infrared therapies. Recent years have clearly demonstrated a vital role for inflammation in deciding the fate of the AVF, and future works must be centred on this to develop therapies for a hitherto unacceptably underserved patient population.
Collapse
Affiliation(s)
| | | | | | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; (J.K.); (A.L.); (G.B.)
| |
Collapse
|
4
|
Trandafir MF, Savu O, Pasarica D, Bleotu C, Gheorghiu M. Interleukin-6 as a Director of Immunological Events and Tissue Regenerative Capacity in Hemodialyzed Diabetes Patients. Med Sci (Basel) 2024; 12:31. [PMID: 38921685 PMCID: PMC11205729 DOI: 10.3390/medsci12020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Hemodialyzed patients have innate immunity activation and adaptive immunity senescence. Diabetes mellitus is a frequent cause for chronic kidney disease and systemic inflammation. We studied the immunological pattern (innate and acquired immunity) and the tissular regeneration capacity in two groups of hemodialyzed patients: one comprised of diabetics and the other of non-diabetics. For inflammation, the following serum markers were determined: interleukin 6 (IL-6), interleukin 1β (IL-1β), tumoral necrosis factor α (TNF-α), IL-6 soluble receptor (sIL-6R), NGAL (human neutrophil gelatinase-associated lipocalin), and interleukin 10 (IL-10). Serum tumoral necrosis factor β (TNF-β) was determined as a cellular immune response marker. Tissue regeneration capacity was studied using neurotrophin-3 (NT-3) and vascular endothelial growth factor β (VEGF-β) serum levels. The results showed important IL-6 and sIL-6R increases in both groups, especially in the diabetic patient group. IL-6 generates trans-signaling at the cellular level through sIL-6R, with proinflammatory and anti-regenerative effects, confirmed through a significant reduction in NT-3 and VEGF-β. Our results suggest that the high serum level of IL-6 significantly influences IL-1β, TNF-β, NT-3, VEGF-β, and IL-10 behavior. Our study is the first that we know of that investigates NT-3 in this patient category. Moreover, we investigated VEGF-β and TNF-β serum behavior, whereas most of the existing data cover only VEGF-α and TNF-α in hemodialyzed patients.
Collapse
Affiliation(s)
- Maria-Florina Trandafir
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.P.); (M.G.)
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Octavian Savu
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- “N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania
| | - Daniela Pasarica
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.P.); (M.G.)
| | - Coralia Bleotu
- “Stefan S. Nicolau” Institute of Virology, 030304 Bucharest, Romania;
| | - Mihaela Gheorghiu
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.P.); (M.G.)
| |
Collapse
|
5
|
Nooti S, Rai V, Radwan MM, Thankam FG, Singh H, Chatzizisis YS, Agrawal DK. Oxidized Low-density Lipoproteins and Lipopolysaccharides Augment Carotid Artery Plaque Vulnerability in Hypercholesterolemic Microswine. CARDIOLOGY AND CARDIOVASCULAR MEDICINE 2023; 7:273-294. [PMID: 37577745 PMCID: PMC10421630 DOI: 10.26502/fccm.92920338] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease and hypercholesterolemia is a risk factor. This study aims to compare the potency of lipopolysaccharide (LPS) and oxidized low-density lipoproteins (oxLDL) to induce plaque formation and increase plaque vulnerability in the carotid artery of hypercholesterolemic Yucatan microswine. Atherosclerotic lesions at the common carotid artery junction and ascending pharyngeal artery were induced in hypercholesterolemic Yucatan microswine at 5-6 months of age with balloon angioplasty. LPS or oxLDL were administered intraluminally at the site of injury after occluding the arterial flow temporarily. Pre-intervention ultrasound (US), angiography, and optical coherence tomography (OCT) were done at baseline and just before euthanasia to assess post-op parameters. The images from the US, OCT, and angiography in the LPS and the oxLDL-treated group showed increased plaque formation with features suggestive of unstable plaque, including necrotic core, thin fibrous caps, and a signal poor region more with oxLDL compared to LPS. Histomorphology of the carotid artery tissue near the injury corroborated the presence of severe lesions in both LPS and oxLDL-treated pigs but more in the oxLDL group. Vascular smooth muscle and endothelial cells treated with LPS and oxLDL showed increased folds changes in mRNA transcripts of the biomarkers of inflammation and plaque vulnerability compared to untreated cells. Collectively, the results suggest that angioplasty-mediated intimal injury of the carotid arteries in atherosclerotic swine with local administration of LPS or ox-LDL induces vulnerable plaques compared to angioplasty alone and oxLDL is relatively more potent than LPS in inducing vulnerable plaque.
Collapse
Affiliation(s)
- S Nooti
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - V Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - M M Radwan
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - F G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - H Singh
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Y S Chatzizisis
- Division of Cardiovascular Medicine, Leonard M. Miller School of Medicine University of Miami, Miami, FL 33136, USA
| | - D K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| |
Collapse
|
6
|
Rangel JF, de Almeida Santos WB, de Carvalho Costa TH, de Bessa KL, Melo JDD. Pressure Analysis in Rigid and Flexible Real Arteriovenous Fistula with Thickness Variation In Vitro. J Funct Biomater 2023; 14:310. [PMID: 37367274 DOI: 10.3390/jfb14060310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 06/28/2023] Open
Abstract
An arteriovenous fistula (AVF) is the access most recommended by several authors. However, its manufacture and use can cause several problems in the short, medium and long term. The study of fluid dynamics related to the structure of the AVF can provide information necessary for the reduction of these problems and a better quality of life for patients. The present study analyzed pressure variation in a rigid and flexible (thickness variation) model of AVFs manufactured based on patient data. A computed tomography was performed from which the geometry of the AVF was removed. This was treated and adapted to the pulsatile flow bench. Bench tests with simulation of systolic-diastolic pulse showed higher pressure peaks in the rigid AVF followed by the flexible model with 1 mm thickness. The inflection of the pressure values of the flexible AVF in relation to the rigid one was observed, being more expressive in the flexible AVF of 1 mm. The 1 mm flexible AVF presented an average pressure close to the physiological one and a smaller pressure drop, showing that this AVF model presents the best condition among the three to serve as a basis for the development of an AVF substitute.
Collapse
Affiliation(s)
- Jonhattan Ferreira Rangel
- Materials Science and Engineering Post-Graduation, Department of Materials Science and Engineering, Federal University of Rio Grande do Norte-UFRN, Natal 59078-970, Brazil
| | - Willyam Brito de Almeida Santos
- Mechanical Post-Graduation, Department of Mechanical Engineering, Federal University of Rio Grande do Norte-UFRN, Natal 59078-970, Brazil
| | - Thércio Henrique de Carvalho Costa
- Mechanical Post-Graduation, Department of Mechanical Engineering, Federal University of Rio Grande do Norte-UFRN, Natal 59078-970, Brazil
| | - Kleiber Lima de Bessa
- Mechanical Post-Graduation, Department of Mechanical Engineering, Federal University of Rio Grande do Norte-UFRN, Natal 59078-970, Brazil
| | - José Daniel Diniz Melo
- Materials Science and Engineering Post-Graduation, Department of Materials Science and Engineering, Federal University of Rio Grande do Norte-UFRN, Natal 59078-970, Brazil
| |
Collapse
|
7
|
Rai V, Singh H, Agrawal DK. Targeting the Crosstalk of Immune Response and Vascular Smooth Muscle Cells Phenotype Switch for Arteriovenous Fistula Maturation. Int J Mol Sci 2022; 23:12012. [PMID: 36233314 PMCID: PMC9570261 DOI: 10.3390/ijms231912012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Plaque formation, thrombosis, and embolism are the underlying causes of acute cardiovascular events such as myocardial infarction and stroke while early thrombosis and stenosis are common pathologies for the maturation failure of arteriovenous fistula (AVF). Chronic inflammation is a common underlying pathogenesis mediated by innate and adaptive immune response involving infiltration of immune cells and secretion of pro- and anti-inflammatory cytokines. Impaired immune cell infiltration and change in vascular smooth muscle cell (VSMC) phenotype play a crucial role in the underlying pathophysiology. However, the change in the phenotype of VSMCs in a microenvironment of immune cell infiltration and increased secretion of cytokines have not been investigated. Since change in VSMC phenotype regulates vessel remodeling after intimal injury, in this study, we investigated the effect of macrophages and pro-inflammatory cytokines, IL-6, IL-1β, and TNF-α, on the change in VSMC phenotype under in vitro conditions. We also investigated the expression of the markers of VSMC phenotypes in arteries with atherosclerotic plaques and VSMCs isolated from control arteries. We found that the inhibition of cytokine downstream signaling may mitigate the effect of cytokines on the change in VSMCs phenotype. The results of this study support that regulating or targeting immune cell infiltration and function might be a therapeutic strategy to mitigate the effects of chronic inflammation to attenuate plaque formation, early thrombosis, and stenosis, and thus enhance AVF maturation.
Collapse
Affiliation(s)
| | | | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
8
|
Immunopathogenesis, early Detection, current therapies and prevention of plantar Fasciitis: A concise review. Int Immunopharmacol 2022; 110:109023. [PMID: 35834954 DOI: 10.1016/j.intimp.2022.109023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022]
Abstract
Plantar fasciitis or the inflammation of the fascial lining on the plantar aspect of the foot continues to be the leading cause of heel pain for many Americans. Common causes can range from anatomical deformities such as pes planus or flat foot, biomechanical etiology such as excessive pronation of the subtalar joint, or chronic diseases such as obesity and diabetes mellitus. The pathophysiology of plantar fasciitis can be either inflammatory due to vasodilation and immune system activation or non-inflammatory involving fibroblastic hypertrophy. Worsening pain of the inferior and medial heel after periods of prolonged rest and late in the day after hours of ambulation and weight-bearing activities is the most common symptom of plantar fasciitis. Common treatments for plantar fasciitis include plantar fascia stretching, physical therapy, orthotics, corticosteroid injections, and even surgery. Despite these treatment strategies, fasciitis remains a clinical problem and better treatment modalities are warranted. Late diagnosis is a common issue for prolonged and equivocal treatment and early diagnostic measures might be beneficial. In this concise review, we discussed the etiology, immunopathogenesis, current treatments of plantar fasciitis and potentially preventative measures prior to the onset of chronic treatment resistant condition.
Collapse
|
9
|
Samra G, Rai V, Agrawal DK. Heterogeneous Population of Immune cells Associated with Early Thrombosis in Arteriovenous Fistula. JOURNAL OF SURGERY AND RESEARCH 2022; 5:423-434. [PMID: 35937643 PMCID: PMC9354142 DOI: 10.26502/jsr.10020237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
End-Stage Renal Disease (ESRD) is a growing cause of morbidity and mortality in the practice of modern medicine. Advances in medicine have elongated the average life span and subsequently made chronic diseases prevalent. Hemodialysis is the main treatment that is used to treat ESRD and is a clinical procedure that is being re-imagined with novel approaches to improve patient and clinic practicality and effectiveness. Arteriovenous Fistulas (AVF) are now used in place of catheters due to their higher success and lower co-morbidities. The main drawback of AVF is the time gap that is needed from the surgical creation of AVF to its use. During this time, the AVF is susceptible to thrombosis and occlusion rendering the fistula ineffective for treatment. Immune cells play a major role in vascular pathologies and macrophages, dendritic cells, and T-regulatory cells are the main cells seen during the inflammatory and anti-inflammatory phases. However, the role of immune response and immune cells in AVF maturation is poorly understood. This study aimed to investigate the immune response and immune cell expression in femoral vessels after AVF creation in a miniswine model of AVF using immunohistochemistry and qRT-PCR. The results of this study revealed an increased expression of immune cells in AVF vessels and suggest an association of immune response with AVF creation and maturation.
Collapse
Affiliation(s)
- Gunimat Samra
- Department of Translational Research, Western University of Health Sciences, Pomona CA 91766, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona CA 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona CA 91766, USA
| |
Collapse
|
10
|
Immune System Dysfunction and Inflammation in Hemodialysis Patients: Two Sides of the Same Coin. J Clin Med 2022; 11:jcm11133759. [PMID: 35807042 PMCID: PMC9267256 DOI: 10.3390/jcm11133759] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Biocompatibility in hemodialysis (HD) has considerably improved in recent decades, but remains an open issue to be solved, appearing essential to reduce systemic inflammation and enhance patients’ clinical outcomes. Clotting prevention, reduction in complement and leukocyte activation, and improvement of antioxidant effect represent the main goals. This review aims to analyze the different pathways involved in HD patients, leading to immune system dysfunction and inflammation. In particular, we mostly review the evidence about thrombogenicity, which probably represents the most important characteristic of bio-incompatibility. Platelet activation is one of the first steps occurring in HD patients, determining several events causing chronic sub-clinical inflammation and immune dysfunction involvement. Moreover, oxidative stress processes, resulting from a loss of balance between pro-oxidant factors and antioxidant mechanisms, have been described, highlighting the link with inflammation. We updated both innate and acquired immune system dysfunctions and their close link with uremic toxins occurring in HD patients, with several consequences leading to increased mortality. The elucidation of the role of immune dysfunction and inflammation in HD patients would enhance not only the understanding of disease physiopathology, but also has the potential to provide new insights into the development of therapeutic strategies.
Collapse
|
11
|
Transcriptional and Epigenetic Factors Associated with Early Thrombosis of Femoral Artery Involved in Arteriovenous Fistula. Proteomes 2022; 10:proteomes10020014. [PMID: 35645372 PMCID: PMC9149803 DOI: 10.3390/proteomes10020014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Arteriovenous fistulas (AVFs), created for hemodialysis in end-stage renal disease patients, mature through the outward remodeling of the outflow vein. However, early thrombosis and chronic inflammation are detrimental to the process of AVF maturation and precipitate AVF maturation failure. For the successful remodeling of the outflow vein, blood flow through the fistula is essential, but early arterial thrombosis attenuates this blood flow, and the vessels become thrombosed and stenosed, leading to AVF failure. The altered expression of various proteins involved in maintaining vessel patency or thrombosis is regulated by genes of which the expression is regulated by transcription factors and microRNAs. In this study, using thrombosed and stenosed arteries following AVF creation, we delineated transcription factors and microRNAs associated with differentially expressed genes in bulk RNA sequencing data using upstream and causal network analysis. We observed changes in many transcription factors and microRNAs that are involved in angiogenesis; vascular smooth muscle cell proliferation, migration, and phenotypic changes; endothelial cell function; hypoxia; oxidative stress; vessel remodeling; immune responses; and inflammation. These factors and microRNAs play a critical role in the underlying molecular mechanisms in AVF maturation. We also observed epigenetic factors involved in gene regulation associated with these molecular mechanisms. The results of this study indicate the importance of investigating the transcriptional and epigenetic regulation of AVF maturation and maturation failure and targeting factors precipitating early thrombosis and stenosis.
Collapse
|