1
|
Yang PX, Hsu YW, Pan TM, Lee CL. Comparative Effects of Monascin and Monascinol Produced by Monascus pilosus SWM-008 on Pro-Inflammatory Factors and Histopathological Alterations in Liver and Kidney Tissues in a Streptozotocin-Nicotinamide-Induced Rat Model. J Fungi (Basel) 2024; 10:815. [PMID: 39728311 PMCID: PMC11728398 DOI: 10.3390/jof10120815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Monascinol (Msol), an analog of monascin (MS) produced by Monascus pilosus, possesses potential anti-inflammatory properties. This study compares the effects of M. pilosus SWM-008 fermented red mold rice, which contains the functional components MS and Msol, on liver and kidney damage related to diabetic complications in rats. An animal model of liver and kidney injury was induced by an intraperitoneal injection of streptozotocin (STZ) at 65 mg/kg body weight combined with nicotinamide (NA) at 150 mg/kg body weight. Our findings indicate that Msol significantly reduces STZ-NA induced pro-inflammatory markers, including interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2) in both liver and kidney tissues. Significant improvements were noted in the histopathological assessments. Msol was more effective than MS in suppressing renal IL-1β and COX-2 expressions. In summary, the findings indicate that Msol shows potential as a novel therapeutic agent for treating liver and kidney injuries associated with diabetic complications.
Collapse
Affiliation(s)
- Pei-Xin Yang
- Department of Life Science, National Taitung University, Taitung 95092, Taiwan;
- SunWay Biotech Co., Taipei 11494, Taiwan
| | - Ya-Wen Hsu
- SunWay Biotech Co., Taipei 11494, Taiwan
| | - Tzu-Ming Pan
- SunWay Biotech Co., Taipei 11494, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Lin Lee
- Department of Life Science, National Taitung University, Taitung 95092, Taiwan;
| |
Collapse
|
2
|
Lee OYA, Wong ANN, Ho CY, Tse KW, Chan AZ, Leung GPH, Kwan YW, Yeung MHY. Potentials of Natural Antioxidants in Reducing Inflammation and Oxidative Stress in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:751. [PMID: 38929190 PMCID: PMC11201162 DOI: 10.3390/antiox13060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic kidney disease (CKD) presents a substantial global public health challenge, with high morbidity and mortality. CKD patients often experience dyslipidaemia and poor glycaemic control, further exacerbating inflammation and oxidative stress in the kidney. If left untreated, these metabolic symptoms can progress to end-stage renal disease, necessitating long-term dialysis or kidney transplantation. Alleviating inflammation responses has become the standard approach in CKD management. Medications such as statins, metformin, and GLP-1 agonists, initially developed for treating metabolic dysregulation, demonstrate promising renal therapeutic benefits. The rising popularity of herbal remedies and supplements, perceived as natural antioxidants, has spurred investigations into their potential efficacy. Notably, lactoferrin, Boerhaavia diffusa, Amauroderma rugosum, and Ganoderma lucidum are known for their anti-inflammatory and antioxidant properties and may support kidney function preservation. However, the mechanisms underlying the effectiveness of Western medications and herbal remedies in alleviating inflammation and oxidative stress occurring in renal dysfunction are not completely known. This review aims to provide a comprehensive overview of CKD treatment strategies and renal function preservation and critically discusses the existing literature's limitations whilst offering insight into the potential antioxidant effects of these interventions. This could provide a useful guide for future clinical trials and facilitate the development of effective treatment strategies for kidney functions.
Collapse
Affiliation(s)
- On Ying Angela Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Alex Ngai Nick Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ching Yan Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Ka Wai Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
| | - Angela Zaneta Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China;
| | - Yiu Wa Kwan
- The School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; (O.Y.A.L.)
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Hurtado K, Scholpa NE, Schnellmann JG, Schnellmann RG. Serotonin regulation of mitochondria in kidney diseases. Pharmacol Res 2024; 203:107154. [PMID: 38521286 PMCID: PMC11823281 DOI: 10.1016/j.phrs.2024.107154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
Serotonin, while conventionally recognized as a neurotransmitter in the CNS, has recently gained attention for its role in the kidney. Specifically, serotonin is not only synthesized in the kidney, but it also regulates glomerular function, vascular resistance, and mitochondrial homeostasis. Because of serotonin's importance to mitochondrial health, this review is focused on the role of serotonin and its receptors in mitochondrial function in the context of acute kidney injury, chronic kidney disease, and diabetic kidney disease, all of which are characterized by mitochondrial dysfunction and none of which has approved pharmacological treatments. Evidence indicates that activation of certain serotonin receptors can stimulate mitochondrial biogenesis (MB) and restore mitochondrial homeostasis, resulting in improved renal function. Serotonin receptor agonists that induce MB are therefore of interest as potential therapeutic strategies for renal injury and disease. SIGNIFICANCE STATEMENT: Mitochondrial dysfunction is associated with many human renal diseases such as acute kidney injury, chronic kidney disease, and diabetic kidney disease, which are associated with increased morbidity and mortality. Unfortunately, none of these pathologies has an FDA-approved pharmacological intervention, underscoring the urgency of identifying new therapeutics for such disorders. Studies show that induction of mitochondrial biogenesis via serotonin (5-hydroxytryptamine, 5-HT) receptors reduces kidney injury markers, restores mitochondrial and renal function after kidney injury, and decreases mortality, suggesting that targeting 5-HT receptors may be a promising therapeutic avenue for mitochondrial dysfunction in kidney diseases. While numerous reviews describe the importance of mitochondria and mitochondrial quality control mechanisms in kidney disease, the relevance of 5-HT receptor-mediated mitochondrial metabolic modulation in the kidney has yet to be thoroughly explored.
Collapse
Affiliation(s)
- Kevin Hurtado
- Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States
| | - Natalie E Scholpa
- Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States; Southern VA Healthcare System, Tucson, AZ, United States
| | | | - Rick G Schnellmann
- Pharmacology and Toxicology, University of Arizona, Tucson, AZ, United States; Southern VA Healthcare System, Tucson, AZ, United States; Department of Neuroscience, College of Medicine, University of Arizona, Tucson, AZ, United States; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States; Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
4
|
Zhang C, Gu L, Xie H, Liu Y, Huang P, Zhang J, Luo D, Zhang J. Glucose transport, transporters and metabolism in diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166995. [PMID: 38142757 DOI: 10.1016/j.bbadis.2023.166995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Diabetic retinopathy (DR) is the most common reason for blindness in working-age individuals globally. Prolonged high blood glucose is a main causative factor for DR development, and glucose transport is prerequisite for the disturbances in DR caused by hyperglycemia. Glucose transport is mediated by its transporters, including the facilitated transporters (glucose transporter, GLUTs), the "active" glucose transporters (sodium-dependent glucose transporters, SGLTs), and the SLC50 family of uniporters (sugars will eventually be exported transporters, SWEETs). Glucose transport across the blood-retinal barrier (BRB) is crucial for nourishing the neuronal retina in the context of retinal physiology. This physiological process primarily relies on GLUTs and SGLTs, which mediate the glucose transportation across both the cell membrane of retinal capillary endothelial cells and the retinal pigment epithelium (RPE). Under diabetic conditions, increased accumulation of extracellular glucose enhances the retinal cellular glucose uptake and metabolism via both glycolysis and glycolytic side branches, which activates several biochemical pathways, including the protein kinase C (PKC), advanced glycation end-products (AGEs), polyol pathway and hexosamine biosynthetic pathway (HBP). These activated biochemical pathways further increase the production of reactive oxygen species (ROS), leading to oxidative stress and activation of Poly (ADP-ribose) polymerase (PARP). The activated PARP further affects all the cellular components in the retina, and finally resulting in microangiopathy, neurodegeneration and low-to-moderate grade inflammation in DR. This review aims to discuss the changes of glucose transport, glucose transporters, as well as its metabolism in DR, which influences the retinal neurovascular unit (NVU) and implies the possible therapeutic strategies for treating DR.
Collapse
Affiliation(s)
- Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Limin Gu
- Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, China.
| | - Hai Xie
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Yan Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Peirong Huang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Eye Diseases; Shanghai Clinical Research Center for Eye Diseases; Shanghai Key Clinical Specialty; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photomedicine; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China.
| |
Collapse
|
5
|
Carneiro de Oliveira K, Wei Y, Repetti RL, Meth J, Majumder N, Sapkota A, Gusella GL, Rohatgi R. Tubular deficiency of ABCA1 augments cholesterol- and Na +-dependent effects on systemic blood pressure in male mice. Am J Physiol Renal Physiol 2024; 326:F265-F277. [PMID: 38153852 PMCID: PMC11207546 DOI: 10.1152/ajprenal.00154.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Dyslipidemia, with changes in plasma membrane (PM) composition, is associated with hypertension, while rising PM cholesterol induces Na+ channel activity. We hypothesize that ablation of renal tubular ABCA1, a cholesterol efflux protein, leads to cholesterol- and Na+-dependent changes in blood pressure (BP). Transgenic mice (TgPAX8rtTA;tetO-Cre/+) expressing a doxycycline (dox)-inducible CRE recombinase were bred with mice expressing floxed ABCA1 to generate renal tubules deficient in ABCA1 (ABCA1FF). Tail-cuff systolic BP (SBP) was measured in mice on specific diets. Immunoblotting was performed on whole and PM protein lysates of kidney from mice completing experimental diets. Cortical PM of ABCA1FF showed reduced ABCA1 (60 ± 28%; n = 10, P < 0.05) compared with wild-type littermates (WT; n = 9). Tail-cuff SBP of ABCA1FF (n = 11) was not only greater post dox, but also during cholesterol or high Na+ feeding (P < 0.05) compared with WT mice (n = 15). A Na+-deficient diet abolished the difference, while 6 wk of cholesterol diet raised SBP in ABCA1FF compared with mice before cholesterol feeding (P < 0.05). No difference in α-ENaC protein abundance was noted in kidney lysate; however, γ-ENaC increased in ABCA1FF mice versus WT mice. In kidney membranes, NKCC2 abundance was greater in ABCA1FF versus WT mice. Cortical lysates of ABCA1FF mouse kidneys expressed less renin and angiotensin I receptor than WT mouse kidneys. Furosemide injection induced a greater diuretic effect in ABCA1FF (n = 7; 45.2 ± 8.7 µL/g body wt) versus WT (n = 7; 33.1 ± 6.9 µL/g body wt; P < 0.05) but amiloride did not. Tubular ABCA1 deficiency induces cholesterol-dependent rise in SBP and modest Na+ sensitivity of SBP, which we speculate is partly related to Na+ transporters and channels.NEW & NOTEWORTHY Cholesterol has been linked to greater Na+ channel activity in kidney cells, which may predispose to systemic hypertension. We showed that when ABCA1, a protein that removes cholesterol from tissues, is ablated from mouse kidneys, systemic blood pressure is greater than normal mice. Dietary cholesterol further increases blood pressure in transgenic mice, whereas low dietary salt intake reduced blood pressure to that of normal mice. Thus, we speculate that diseases and pharmaceuticals that reduce renal ABCA1 expression, like diabetes and calcineurin inhibitors, respectively, contribute to the prominence of hypertension in their clinical presentation.
Collapse
Affiliation(s)
- Karin Carneiro de Oliveira
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Yuan Wei
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Robert L Repetti
- Renal Section, Department of Medicine, Northport Veterans Affairs Medical Center, Northport, New York, United States
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Jennifer Meth
- Renal Section, Department of Medicine, Northport Veterans Affairs Medical Center, Northport, New York, United States
| | - Nomrota Majumder
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Ananda Sapkota
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - G Luca Gusella
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Rajeev Rohatgi
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
6
|
Trentin-Sonoda M, Cheff V, Gutsol A, Hébert RL. Sex-dependent effects of Canagliflozin on kidney protection in mice with combined hypertension-type 1 diabetes. PLoS One 2023; 18:e0295284. [PMID: 38055691 DOI: 10.1371/journal.pone.0295284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
Canagliflozin (CANA) is a sodium-glucose cotransporter 2 (SGLT2) inhibitor with blood glucose lowering effects. CANA also promotes kidney protection in patients with cardiovascular diseases and type 2 diabetes (T2D), as well as in normoglycemic patients with hypertension or heart failure. Clinical studies, although conduct in both sexes, do not report sex-dependent differences in T2DM treated with CANA. However, the impact of CANA in type 1 diabetes, as well in sex-dependent outcomes in such cohort needs further understanding. To analyze the effects of CANA in mice with combined hypertension and type 1 diabetes, diabetes was induced by STZ injection (5 days, 50mg/kg/day) in both male and female 8 weeks old genetic hypertensive mice (Lin), whereas the control (Lin) received 0.1M sodium citrate injections. 8 weeks after STZ. Mice were fed either regular or CANA-infused diet for 4 weeks. 8 weeks after STZ, hyperglycemia was present in both male and female mice. CANA reversed BG increase mice fed regular diet. Male LinSTZ mice had elevated water intake, urine output, urinary albumin to creatinine ratio (ACR), kidney lesion score, and creatinine clearance compared to the Lin control group. Kidney injury was improved in male LinSTZ + CANA group in male mice. Water intake and urine output were not statistically significantly different in female LinSTZ compared to female LinSTZ+ CANA. Moreover, CANA did not improve kidney injury in female mice, showing no effect in creatinine clearance, lesion score and fibrosis when compared to LinSTZ fed regular diet. Here we show that Canagliflozin might exert different kidney protection effects in male compared to female mice with hypertension and type 1 diabetes. Sex-dimorphisms were previously found in the pathophysiology of diabetes induced by STZ. Therefore, we highlight the importance of in-depth investigation on sex-dependent effects of CANA, taking in consideration the unique characteristics of disease progression for each sex.
Collapse
Affiliation(s)
- Mayra Trentin-Sonoda
- Kidney Research Centre, Division of Nephrology, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Véronique Cheff
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alex Gutsol
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard L Hébert
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Matthews J, Herat L, Schlaich MP, Matthews V. The Impact of SGLT2 Inhibitors in the Heart and Kidneys Regardless of Diabetes Status. Int J Mol Sci 2023; 24:14243. [PMID: 37762542 PMCID: PMC10532235 DOI: 10.3390/ijms241814243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic Kidney Disease (CKD) and Cardiovascular Disease (CVD) are two devastating diseases that may occur in nondiabetics or individuals with diabetes and, when combined, it is referred to as cardiorenal disease. The impact of cardiorenal disease on society, the economy and the healthcare system is enormous. Although there are numerous therapies for cardiorenal disease, one therapy showing a great deal of promise is sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors. The SGLT family member, SGLT2, is often implicated in the pathogenesis of a range of diseases, and the dysregulation of the activity of SGLT2 markedly effects the transport of glucose and sodium across the luminal membrane of renal cells. Inhibitors of SGLT2 were developed based on the antidiabetic action initiated by inhibiting renal glucose reabsorption, thereby increasing glucosuria. Of great medical significance, large-scale clinical trials utilizing a range of SGLT2 inhibitors have demonstrated both metabolic and biochemical benefits via numerous novel mechanisms, such as sympathoinhibition, which will be discussed in this review. In summary, SGLT2 inhibitors clearly exert cardio-renal protection in people with and without diabetes in both preclinical and clinical settings. This exciting class of inhibitors improve hyperglycemia, high blood pressure, hyperlipidemia and diabetic retinopathy via multiple mechanisms, of which many are yet to be elucidated.
Collapse
Affiliation(s)
- Jennifer Matthews
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (J.M.); (L.H.)
| | - Lakshini Herat
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (J.M.); (L.H.)
| | - Markus P. Schlaich
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Medicine, University of Western Australia, Crawley, WA 6009, Australia;
- Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Vance Matthews
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (J.M.); (L.H.)
| |
Collapse
|
8
|
Ashfaq A, Meineck M, Pautz A, Arioglu-Inan E, Weinmann-Menke J, Michel MC. A systematic review on renal effects of SGLT2 inhibitors in rodent models of diabetic nephropathy. Pharmacol Ther 2023; 249:108503. [PMID: 37495021 DOI: 10.1016/j.pharmthera.2023.108503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
We have performed a systematic review of studies reporting on the renal effects of SGLT2 inhibitors in rodent models of diabetes. In 105 studies, SGLT2 inhibitors improved not only the glycemic control but also various aspects of renal function in most cases. These nephroprotective effects were similarly reported whether treatment with the SGLT2 inhibitor started concomitant with the onset of diabetes (within 1 week), early after onset (1-4 weeks) or after nephropathy had developed (>4 weeks after onset) with the latter probably having the greatest translational value. They were observed across various animal models of type 1 and type 2 diabetes/obesity (4 and 23 models, respectively), although studies in the type 2 diabetes model of db/db mice more often had negative data than in other models. Among possibly underlying pathophysiological mechanisms of nephroprotection, treatment with SGLT2 inhibitors had beneficial effects on lipid metabolism, blood pressure, glomerulosclerosis as well as renal tubular fibrosis, apoptosis, oxidative stress, and inflammation. These pathomechanisms highly influence atherosclerosis and renal health, which are two major factors that lead to an enhanced mortality in patients with diabetes and/or chronic kidney disease. Interestingly, renal SGLT2 inhibitor effects did not always correlate with those on glucose homeostasis, particularly in a limited number of direct comparative studies with other anti-diabetic treatments, indicating that nephroprotection may at least partly occur by mechanisms other than improving glycemic control. Our analyses did not provide evidence for different nephroprotective efficacy between SGLT2 inhibitors. Importantly, only four of 105 studies reported on female animals, and none provided direct comparative data between sexes. We conclude that more data on female animals and more direct comparative studies with other anti-diabetic compounds and combinations of treatments are needed.
Collapse
Affiliation(s)
- Aqsa Ashfaq
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Myriam Meineck
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Andrea Pautz
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ebru Arioglu-Inan
- Dept. of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Julia Weinmann-Menke
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Martin C Michel
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
9
|
Herat LY, Matthews JR, Hibbs M, Rakoczy EP, Schlaich MP, Matthews VB. SGLT1/2 inhibition improves glycemic control and multi-organ protection in type 1 diabetes. iScience 2023; 26:107260. [PMID: 37520739 PMCID: PMC10384225 DOI: 10.1016/j.isci.2023.107260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/26/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Sodium glucose cotransporters (SGLTs) are transport proteins that are expressed throughout the body. Inhibition of SGLTs is a relatively novel therapeutic strategy to improve glycemic control and has been shown to promote cardiorenal benefits. Dual SGLT1/2 inhibitors (SGLT1/2i) such as sotagliflozin target both SGLT1 and 2 proteins. Sotagliflozin or vehicle was administered to diabetic Akimba mice for 8 weeks at a dose of 25 mg/kg/day. Urine glucose levels, water consumption, and body weight were measured weekly. Serum, kidney, pancreas, and brain tissue were harvested under terminal anesthesia. Tissues were assessed using immunohistochemistry or ELISA techniques. Treatment with sotagliflozin promoted multiple metabolic benefits in diabetic Akimba mice resulting in decreased blood glucose and improved polydipsia. Sotagliflozin also prevented mortalities associated with diabetes. Our data suggests that there is the possibility that combined SGLT1/2i may be superior to SGLT2i in controlling glucose homeostasis and provides protection of multiple organs affected by diabetes.
Collapse
Affiliation(s)
- Lakshini Yasaswi Herat
- Dobney Hypertension Centre, School of Biomedical Sciences – Royal Perth Hospital Unit / Royal Perth Hospital Medical Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
| | - Jennifer Rose Matthews
- Dobney Hypertension Centre, School of Biomedical Sciences – Royal Perth Hospital Unit / Royal Perth Hospital Medical Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
| | - Moira Hibbs
- Research Centre, Royal Perth Hospital, Perth, WA 6000, Australia
| | | | - Markus Peter Schlaich
- Dobney Hypertension Centre, Medical School – Royal Perth Hospital Unit / Royal Perth Hospital Medical Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
- Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Vance Bruce Matthews
- Dobney Hypertension Centre, School of Biomedical Sciences – Royal Perth Hospital Unit / Royal Perth Hospital Medical Research Foundation, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
10
|
Tun SBB, Barathi VA. Akimba Proliferative Diabetic Retinopathy Model: Understanding Molecular Mechanism and Drug Screening for the Progression of Diabetic Retinopathy. Methods Mol Biol 2023; 2678:13-26. [PMID: 37326702 DOI: 10.1007/978-1-0716-3255-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As the prevalence of diabetes has reached epidemic proportions worldwide, diabetic retinopathy incidence is increasing rapidly. An advanced diabetic retinopathy (DR) stage can lead to a sight-threatening form. There is growing evidence showing diabetes causes a range of metabolic changes that subsequently lead to pathological modifications in the retina and retinal blood vessels. To understand the complex mechanism of the pathophysiology of DR, a precise model is not readily available. By crossbreeding the Akita and Kimba strains, a suitable proliferative DR model was acquired. This new Akimba strain manifests marked hyperglycemia and vascular changes, which resemble the early and advanced stage of DR.Here, we describe the breeding method, colony screening for experiments, and imaging techniques widely used to investigate the DR progression in this model. We elaborate step-by-step protocols to set up and perform fundus, fluorescein angiography, optical coherence tomography, and optical coherence tomography-angiogram to study retinal structural changes and vascular abnormalities. In addition, we show a method to label the leukocytes with fluorescence and laser speckle flowgraphy to examine the inflammation in the retina and retinal vessel blood flow speed, respectively. Lastly, we describe electroretinogram to evaluate the functional aspect of the DR transformations.
Collapse
Affiliation(s)
- Sai Bo Bo Tun
- Translational Pre-Clinical Model Platform, Singapore Eye Research Institute, Singapore, Singapore
- Karolinska Institutet, Stockholm, Sweden
| | - Veluchamy Amutha Barathi
- Translational Pre-Clinical Model Platform, Singapore Eye Research Institute, Singapore, Singapore.
- ACP in Ophthalmology & Visual Sciences, DUKE-NUS Graduate Medical School, Singapore, Singapore.
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|