1
|
Yang Y, Zhou T, Zhao X, Cai Y, Xu Y, Gang X, Wang G. Main mechanisms and clinical implications of alterations in energy expenditure state among patients with pheochromocytoma and paraganglioma: A review. Medicine (Baltimore) 2024; 103:e37916. [PMID: 38669419 PMCID: PMC11049756 DOI: 10.1097/md.0000000000037916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Pheochromocytoma and paraganglioma (PPGL) are rare neuroendocrine tumors with diverse clinical presentations. Alterations in energy expenditure state are commonly observed in patients with PPGL. However, the reported prevalence of hypermetabolism varies significantly and the underlying mechanisms and implications of this presentation have not been well elucidated. This review discusses and analyzes the factors that contribute to energy consumption. Elevated catecholamine levels in patients can significantly affect substance and energy metabolism. Additionally, changes in the activation of brown adipose tissue (BAT), inflammation, and the inherent energy demands of the tumor can contribute to increased resting energy expenditure (REE) and other energy metabolism indicators. The PPGL biomarker, chromogranin A (CgA), and its fragments also influence energy metabolism. Chronic hypermetabolic states may be detrimental to these patients, with surgical tumor removal remaining the primary therapeutic intervention. The high energy expenditure of PPGL has not received the attention it deserves, and an accurate assessment of energy metabolism is the cornerstone for an adequate understanding and treatment of the disease.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yunjia Cai
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yao Xu
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Castellá M, Blasco-Roset A, Peyrou M, Gavaldà-Navarro A, Villarroya J, Quesada-López T, Lorente-Poch L, Sancho J, Szymczak F, Piron A, Rodríguez-Fernández S, Carobbio S, Goday A, Domingo P, Vidal-Puig A, Giralt M, Eizirik DL, Villarroya F, Cereijo R. Adipose tissue plasticity in pheochromocytoma patients suggests a role of the splicing machinery in human adipose browning. iScience 2023; 26:106847. [PMID: 37250773 PMCID: PMC10209542 DOI: 10.1016/j.isci.2023.106847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/31/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Adipose tissue from pheochromocytoma patients acquires brown fat features, making it a valuable model for studying the mechanisms that control thermogenic adipose plasticity in humans. Transcriptomic analyses revealed a massive downregulation of splicing machinery components and splicing regulatory factors in browned adipose tissue from patients, with upregulation of a few genes encoding RNA-binding proteins potentially involved in splicing regulation. These changes were also observed in cell culture models of human brown adipocyte differentiation, confirming a potential involvement of splicing in the cell-autonomous control of adipose browning. The coordinated changes in splicing are associated with a profound modification in the expression levels of splicing-driven transcript isoforms for genes involved in the specialized metabolism of brown adipocytes and those encoding master transcriptional regulators of adipose browning. Splicing control appears to be a relevant component of the coordinated gene expression changes that allow human adipose tissue to acquire a brown phenotype.
Collapse
Affiliation(s)
- Moisés Castellá
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Albert Blasco-Roset
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Marion Peyrou
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Joan Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Tania Quesada-López
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, and Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | | | - Juan Sancho
- Endocrine Surgery Unit, Hospital del Mar, 08003 Barcelona, Spain
| | - Florian Szymczak
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), 1070 Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Anthony Piron
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), 1070 Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Sonia Rodríguez-Fernández
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge 289, UK
| | - Stefania Carobbio
- Bases Moleculares de Patologías Humanas, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Albert Goday
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
- Endocrinology Service, Hospital del Mar, IMIM, 08003 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Pere Domingo
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, and Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge 289, UK
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Décio L. Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre De Bruxelles (ULB), 1070 Brussels, Belgium
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Rubén Cereijo
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona; Institut de Biomedicina de la Universitat de Barcelona (IBUB); and Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, and Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| |
Collapse
|
3
|
Hypermetabolism and Substrate Utilization Rates in Pheochromocytoma and Functional Paraganglioma. Biomedicines 2022; 10:biomedicines10081980. [PMID: 36009527 PMCID: PMC9406117 DOI: 10.3390/biomedicines10081980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022] Open
Abstract
The overproduction of catecholamines in pheochromocytoma/paraganglioma (PPGL) induces a hypermetabolic state. The aim of this study was to evaluate the incidence of a hypermetabolic state and differences in substrate metabolism in consecutive PPGL patients divided by catecholamine phenotype. Resting energy expenditure (REE) and respiratory quotient (RQ) were measured in 108 consecutive PPGL patients and 70 controls by indirect calorimetry. Hypermetabolic state was defined according to the Mifflin St. Jeor Equation as a ratio above 110%. Hypermetabolic state was confirmed in 70% of PPGL patients, regardless of phenotype. Older age, prevalence of diabetes mellitus and arterial hypertension were correlated with hypermetabolic PPGL as compared to normometabolic form. Analysis according to overproduced catecholamine showed differences in VCO2 (p < 0.05) and RQ (p < 0.01) and thus different substate metabolism between phenotypes in hypermetabolic form of PPGL. Lipid utilization was higher in the adrenergic phenotype (p = 0.001) and positively associated with the percentage of REE ratio (R = 0.48, p < 0.001), whereas the noradrenergic phenotype preferentially oxidizes carbohydrates (P = 0.001) and is correlated with the percentage of REE ratio (R = 0.60, p < 0.001). Hypermetabolic state in PPGL is a common finding in both catecholamine phenotypes. Hypermetabolic PPGL patients are older and suffer more from diabetes mellitus and arterial hypertension. Under basal conditions, the noradrenergic type preferentially metabolizes carbohydrates, whereas the adrenergic phenotype preferentially metabolizes lipids.
Collapse
|