1
|
Li X, Liu Y, Wang J, Chen X, Reichetzeder C, Elitok S, Krämer BK, Doebis C, Huesker K, von Baehr V, Hocher B. Vitamin D Is Associated with Lipid Metabolism: A Sex- and Age-Dependent Analysis of a Large Outpatient Cohort. Nutrients 2024; 16:3936. [PMID: 39599722 PMCID: PMC11597382 DOI: 10.3390/nu16223936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Vitamin D is a fat-soluble steroid that influences cardiovascular health by affecting lipid metabolism. Since dyslipidemia is a key risk factor for cardiovascular disease (CVD), our study aimed to explore the relationship between vitamin D levels and lipid parameters, considering the effects of age and gender. Methods: In this cross-sectional study of 47,778 outpatients, we analyzed correlations between two forms of vitamin D-25-hydroxyvitamin D (25(OH)D) and 1,25-dihydroxyvitamin D (1,25(OH)2D)-and lipid parameters, including low-density lipoprotein (LDL), high-density lipoprotein (HDL), and total cholesterol (TC). Subgroup analyses by age and gender provided additional insights. Results: Results showed that 25(OH)D levels were negatively correlated with LDL and TC across the cohort. This association was particularly evident in men over 50, whereas women showed a positive correlation with LDL and TC before age 50 and a negative correlation after. HDL levels positively correlated with 25(OH)D across all age groups, with the strongest association in postmenopausal women. In contrast, 1,25(OH)2D showed a positive correlation only with HDL in individuals over 50, with no significant correlation with LDL or TC in any age group. Conclusions: In conclusion, findings from this cross-sectional study underscore an association between elevated levels of 25(OH)D and more favorable lipid profiles, characterized by reduced LDL and total cholesterol, as well as increased HDL levels. This association is particularly pronounced among individuals over 50 years of age and postmenopausal women.
Collapse
Affiliation(s)
- Xitong Li
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Center Mannheim, University of Heidelberg, 69120 Mannheim, Germany; (X.L.); (Y.L.); (J.W.); (X.C.); (B.K.K.)
- Department of Nephrology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Yvonne Liu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Center Mannheim, University of Heidelberg, 69120 Mannheim, Germany; (X.L.); (Y.L.); (J.W.); (X.C.); (B.K.K.)
- Department of Nephrology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jingyun Wang
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Center Mannheim, University of Heidelberg, 69120 Mannheim, Germany; (X.L.); (Y.L.); (J.W.); (X.C.); (B.K.K.)
| | - Xin Chen
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Center Mannheim, University of Heidelberg, 69120 Mannheim, Germany; (X.L.); (Y.L.); (J.W.); (X.C.); (B.K.K.)
| | - Christoph Reichetzeder
- Institute for Clinical Research and Systems Medicine, Health and Medical University, 14467 Potsdam, Germany; (C.R.); (S.E.)
| | - Saban Elitok
- Institute for Clinical Research and Systems Medicine, Health and Medical University, 14467 Potsdam, Germany; (C.R.); (S.E.)
- Department of Nephrology and Endocrinology, Klinikum Ernst von Bergmann, 14467 Potsdam, Germany
| | - Bernhard K. Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Center Mannheim, University of Heidelberg, 69120 Mannheim, Germany; (X.L.); (Y.L.); (J.W.); (X.C.); (B.K.K.)
| | - Cornelia Doebis
- Institute of Medical Diagnostics (IMD), 12247 Berlin, Germany; (C.D.); (K.H.); (V.v.B.)
| | - Katrin Huesker
- Institute of Medical Diagnostics (IMD), 12247 Berlin, Germany; (C.D.); (K.H.); (V.v.B.)
| | - Volker von Baehr
- Institute of Medical Diagnostics (IMD), 12247 Berlin, Germany; (C.D.); (K.H.); (V.v.B.)
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology), University Medical Center Mannheim, University of Heidelberg, 69120 Mannheim, Germany; (X.L.); (Y.L.); (J.W.); (X.C.); (B.K.K.)
- Institute of Medical Diagnostics (IMD), 12247 Berlin, Germany; (C.D.); (K.H.); (V.v.B.)
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
- School of Medicine, Central South University, Changsha 410078, China
| |
Collapse
|
2
|
Liang Z, Wang Z, Liu X, He Y. Confronting the global obesity epidemic: investigating the role and underlying mechanisms of vitamin D in metabolic syndrome management. Front Nutr 2024; 11:1416344. [PMID: 39183985 PMCID: PMC11342275 DOI: 10.3389/fnut.2024.1416344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
The escalating prevalence of MetS, driven by global obesity trends, underscores the urgent need for innovative therapeutic strategies. To gain a deeper understanding of the therapeutic potential of vitamin D in addressing MetS, we embarked on a targeted literature review that thoroughly examines the scientific underpinnings and pivotal discoveries derived from pertinent studies, aiming to unravel the intricate mechanisms through which vitamin D exerts its effects on MetS and its components. This article explores the multifunctional role of vitamin D in the management of MetS, focusing on its regulatory effects on insulin sensitivity, lipid metabolism, inflammation, and immune response. Through an extensive review of current research, we unveil the complex mechanisms by which vitamin D influences MetS components, highlighting its potential as a therapeutic agent. Our analysis reveals that vitamin D's efficacy extends beyond bone health to include significant impacts on cellular and molecular pathways critical to MetS. We advocate for further research to optimize vitamin D supplementation as a component of precision medicine for MetS, considering the safety concerns related to dosage and long-term use.
Collapse
Affiliation(s)
- Zihui Liang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Physical Medicine and Rehabilitation, The Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Ziliang Wang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xueyong Liu
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Physical Medicine and Rehabilitation, The Second Clinical College, China Medical University, Shenyang, Liaoning, China
| | - Yu He
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Physical Medicine and Rehabilitation, The Second Clinical College, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Daneshvar K, Akhlaghi M, Iranpour S, Irajpour M, Pourazizi M. Vitamin D deficiency in patients with retinal vein occlusion: a systematic review and meta-analysis. Int J Retina Vitreous 2024; 10:52. [PMID: 39068491 PMCID: PMC11282712 DOI: 10.1186/s40942-024-00571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND This review aims to substantiate the correlation between vitamin D and retinal vein occlusion (RVO) within the medical literature. METHOD A systematic review and meta-analysis were conducted in PubMed, SCOPUS, Web of Science, and Embase until December 10th, 2023. A meticulous literature search was undertaken to identify and analyze all observational-analytical papers reporting vitamin D levels in RVO patients. The principal outcome measures centered on the comparative assessment of vitamin D levels between patients with RVO (cases) and those devoid of RVO (controls). The protocol was registered in PROSPERO (code: CRD42024499853). RESULTS A total of six relevant studies consisting of 589 participants were included in this meta-analysis. The results indicated a significant association between vitamin D deficiency and increased risk of RVO (Odds ratio = 14.51; 95% CI: [1.71, 122.59], P = 0.014); and patients with RVO exhibited a significant decrease in serum vitamin D levels by 1.91ng/mL (95% CI: [-2.29, -1.54], P < 0.001). Moreover, there was no significant difference observed in vitamin D levels between central RVO (CRVO) and branch RVO (BRVO) subtypes (P = 0.63). CONCLUSION RVO patients have more vitamin D deficiency than healthy controls. These results contribute to the growing body of evidence highlighting the intricate role of vitamin D supplementation as both a prophylactic and a treatment strategy in RVO. PROSPERO REGISTRATION IDENTIFIER CRD42024499853.
Collapse
Affiliation(s)
- Kimia Daneshvar
- Isfahan Eye Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Akhlaghi
- Isfahan Eye Research Center, Department of Ophthalmology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shila Iranpour
- Isfahan Eye Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Matin Irajpour
- Isfahan Eye Research Center, Department of Ophthalmology, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Ophthalmology, Feiz Hospital, Modares St, Isfahan, Iran.
| | - Mohsen Pourazizi
- Isfahan Eye Research Center, Department of Ophthalmology, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Ophthalmology, Feiz Hospital, Modares St, Isfahan, Iran.
| |
Collapse
|
4
|
Ozcagli E, Kubickova B, Jacobs MN. Addressing chemically-induced obesogenic metabolic disruption: selection of chemicals for in vitro human PPARα, PPARγ transactivation, and adipogenesis test methods. Front Endocrinol (Lausanne) 2024; 15:1401120. [PMID: 39040675 PMCID: PMC11260640 DOI: 10.3389/fendo.2024.1401120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
Whilst western diet and sedentary lifestyles heavily contribute to the global obesity epidemic, it is likely that chemical exposure may also contribute. A substantial body of literature implicates a variety of suspected environmental chemicals in metabolic disruption and obesogenic mechanisms. Chemically induced obesogenic metabolic disruption is not yet considered in regulatory testing paradigms or regulations, but this is an internationally recognised human health regulatory development need. An early step in the development of relevant regulatory test methods is to derive appropriate minimum chemical selection lists for the target endpoint and its key mechanisms, such that the test method can be suitably optimised and validated. Independently collated and reviewed reference and proficiency chemicals relevant for the regulatory chemical universe that they are intended to serve, assist regulatory test method development and validation, particularly in relation to the OECD Test Guidelines Programme. To address obesogenic mechanisms and modes of action for chemical hazard assessment, key initiating mechanisms include molecular-level Peroxisome Proliferator-Activated Receptor (PPAR) α and γ agonism and the tissue/organ-level key event of perturbation of the adipogenesis process that may lead to excess white adipose tissue. Here we present a critical literature review, analysis and evaluation of chemicals suitable for the development, optimisation and validation of human PPARα and PPARγ agonism and human white adipose tissue adipogenesis test methods. The chemical lists have been derived with consideration of essential criteria needed for understanding the strengths and limitations of the test methods. With a weight of evidence approach, this has been combined with practical and applied aspects required for the integration and combination of relevant candidate test methods into test batteries, as part of an Integrated Approach to Testing and Assessment for metabolic disruption. The proposed proficiency and reference chemical list includes a long list of negatives and positives (20 chemicals for PPARα, 21 for PPARγ, and 11 for adipogenesis) from which a (pre-)validation proficiency chemicals list has been derived.
Collapse
|
5
|
Kumari A, Saini V, Kumar V. Decreased mRNA expression of NR1H3 and ABCA1 in pulmonary tuberculosis patients from population of Punjab, India. Mol Biol Rep 2024; 51:657. [PMID: 38740636 DOI: 10.1007/s11033-024-09589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Mycobacterium tuberculosis (MTB) is the causative organism of tuberculosis. Cholesterol is a crucial carbon source required for the survival of MTB in host cells. Transcription factor NR1H3 along with its important target genes ABCA1 and ApoE play important role in removal of extra cholesterol from cells. Changes in the gene expression of NR1H3, ABCA1 and ApoE can affect cholesterol homeostasis and thus the survival of MTB in host cells.Therefore, the present study was designed to analyze the mRNA expression of NR1H3, ABCA1 and ApoE in pulmonary TB (PTB) patients from the population of Punjab, India. METHODS AND RESULTS In this study, mRNA expression of the transcription factor NR1H3 and its target genes ABCA1 and ApoE was analyzed in 89 subjects, including 41 PTB patients and 48 healthy controls (HCs) by real-time quantitative PCR. It was found that the mRNA expression of both NR1H3 and ABCA1 genes was significantly lower in TB patients than in HCs (p < 0.001). Even after sex-wise stratification of the subjects, mRNA expression of NR1H3 and ABCA1 was found to be down-regulated in both male and female TB patients. No significant difference was observed in expression of ApoE (p = 0.98). CONCLUSIONS The present study found that the mRNA expression of NR1H3 and ABCA1 is down-regulated in TB patients from Punjab state of India.
Collapse
Affiliation(s)
- Anju Kumari
- Department of Zoology, Panjab University, Sector-14, Chandigarh, 160014, India
| | - Varinder Saini
- Department of Pulmonary Medicine, Government Medical College and Hospital, Sector-32, Chandigarh, India
| | - Vijay Kumar
- Department of Zoology, Panjab University, Sector-14, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Ma C, Li Y, Tian M, Deng Q, Qin X, Lu H, Gao J, Chen M, Weinstein LS, Zhang M, Bu P, Yang J, Zhang Y, Zhang C, Zhang W. Gsα Regulates Macrophage Foam Cell Formation During Atherosclerosis. Circ Res 2024; 134:e34-e51. [PMID: 38375634 PMCID: PMC10978275 DOI: 10.1161/circresaha.123.323156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Many cardiovascular pathologies are induced by signaling through G-protein-coupled receptors via Gsα (G protein stimulatory α subunit) proteins. However, the specific cellular mechanisms that are driven by Gsα and contribute to the development of atherosclerosis remain unclear. METHODS High-throughput screening involving data from single-cell and bulk sequencing were used to explore the expression of Gsα in atherosclerosis. The differentially expression and activity of Gsα were analyzed by immunofluorescence and cAMP measurements. Macrophage-specific Gsα knockout (Mac-GsαKO) mice were generated to study the effect on atherosclerosis. The role of Gsα was determined by transplanting bone marrow and performing assays for foam cell formation, Dil-ox-LDL (oxidized low-density lipoprotein) uptake, chromatin immunoprecipitation, and luciferase reporter assays. RESULTS ScRNA-seq showed elevated Gnas in atherosclerotic mouse aorta's cholesterol metabolism macrophage cluster, while bulk sequencing confirmed increased GNAS expression in human plaque macrophage content. A significant upregulation of Gsα and active Gsα occurred in macrophages from human and mouse plaques. Ox-LDL could translocate Gsα from macrophage lipid rafts in short-term and promote Gnas transcription through ERK1/2 activation and C/EBPβ phosphorylation via oxidative stress in long-term. Atherosclerotic lesions from Mac-GsαKO mice displayed decreased lipid deposition compared with those from control mice. Additionally, Gsα deficiency alleviated lipid uptake and foam cell formation. Mechanistically, Gsα increased the levels of cAMP and transcriptional activity of the cAMP response element binding protein, which resulted in increased expression of CD36 and SR-A1. In the translational experiments, inhibiting Gsα activation with suramin or cpGN13 reduced lipid uptake, foam cell formation, and the progression of atherosclerotic plaques in mice in vivo. CONCLUSIONS Gsα activation is enhanced during atherosclerotic progression and increases lipid uptake and foam cell formation. The genetic or chemical inactivation of Gsα inhibit the development of atherosclerosis in mice, suggesting that drugs targeting Gsα may be useful in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Chang Ma
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yihui Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mi Tian
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Qiming Deng
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoteng Qin
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Hanlin Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250013, China
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20814, USA
| | - Lee S. Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20814, USA
| | - Mei Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Peili Bu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jianmin Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wencheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
7
|
Shao Y, Xiong M, Liu J, Gu Z, Wu Z, Cao L. LOC646762 Is Involved in Adipogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells. ACS OMEGA 2024; 9:8464-8470. [PMID: 38405496 PMCID: PMC10882647 DOI: 10.1021/acsomega.3c09684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
Long noncoding RNA (lncRNA) has been shown to participate in adipogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). In this study, we aimed to investigate the role of lncRNA-LOC646762 in adipogenic differentiation of BMSCs. Transcriptome sequencing revealed a positive correlation between LOC646762 transcription and expression of adipogenic marker genes in adipogenic differentiation. Moreover, LOC646762 overexpression did not negatively impact the cell proliferation of BMSCs. Besides, LOC646762 plays a crucial role in adipogenic differentiation, as evidenced by its positive correlation with adipogenic marker gene expression. Its possible interaction with its proposed target C/EBPβ suggests its involvement in essential pathways governing adipogenesis. Collectively, our study outcomes provide valuable insights into the molecular mechanisms underlying the adipogenic differentiation of BMSCs and lay a strong foundation for further research in regenerative medicine.
Collapse
Affiliation(s)
- Yifan Shao
- Jiujiang
City Key Laboratory of Cell Therapy, The
First Hospital of Jiujiang City, Jiujiang 332000, China
| | - Minqi Xiong
- The
Chinese University of Hong Kong, Shenzhen 518000, China
| | - Jianyun Liu
- Key
Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang 332000, China
| | - Zhiping Gu
- Jiujiang
City Key Laboratory of Cell Therapy, The
First Hospital of Jiujiang City, Jiujiang 332000, China
| | - Zhaoping Wu
- Jiujiang
City Key Laboratory of Cell Therapy, The
First Hospital of Jiujiang City, Jiujiang 332000, China
| | - Lingling Cao
- Jiujiang
City Key Laboratory of Cell Therapy, The
First Hospital of Jiujiang City, Jiujiang 332000, China
| |
Collapse
|
8
|
Khanolkar S, Hirani S, Mishra A, Vardhan S, Hirani S, Prasad R, Wanjari M. Exploring the Role of Vitamin D in Atherosclerosis and Its Impact on Cardiovascular Events: A Comprehensive Review. Cureus 2023; 15:e42470. [PMID: 37637551 PMCID: PMC10450567 DOI: 10.7759/cureus.42470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
This review explores the role of vitamin D in atherosclerosis and its impact on cardiovascular events. Atherosclerosis, a chronic inflammatory disease characterized by plaque accumulation in arterial walls, is a major contributor to cardiovascular events such as heart attacks and strokes. Vitamin D has emerged as a multifunctional hormone with pleiotropic effects, extending beyond its traditional role in calcium and bone metabolism. Through its anti-inflammatory, immunomodulatory, and antioxidative properties, vitamin D may influence the development and progression of atherosclerosis. The association between vitamin D deficiency and atherosclerosis has been extensively studied. Observational studies consistently report an inverse relationship between vitamin D levels, atherosclerotic risk factors, and markers of subclinical atherosclerosis. Mechanistically, vitamin D exerts anti-inflammatory effects, modulates immune responses, improves endothelial function, and influences lipid metabolism, all of which play critical roles in atherosclerosis development and plaque stability. Furthermore, vitamin D deficiency has been linked to an increased risk of cardiovascular events. Vitamin D influences thrombosis, platelet aggregation, arterial stiffness, blood pressure regulation, and overall vascular health, collectively contributing to cardiovascular event risk. However, the clinical implications of vitamin D for managing atherosclerosis and reducing cardiovascular event risk are still being explored. Randomized controlled trials investigating the cardiovascular benefits of vitamin D supplementation have yielded mixed results, necessitating further research to determine optimal dosages, durations, and patient populations. The review also addresses public health recommendations and future directions. Examining current guidelines, identifying research gaps, and considering public health implications are crucial for translating scientific knowledge into effective interventions. Raising awareness, implementing population-level strategies, and integrating vitamin D assessment into routine clinical practice are key to improving cardiovascular outcomes.
Collapse
Affiliation(s)
- Shubham Khanolkar
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sajid Hirani
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aditi Mishra
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sauvik Vardhan
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shoyeb Hirani
- Medicine, Mahatma Gandhi Mission (MGM) Medical College and Hospital, Aurangabad, IND
| | - Roshan Prasad
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mayur Wanjari
- Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
9
|
Starska-Kowarska K. Role of Vitamin D in Head and Neck Cancer-Immune Function, Anti-Tumour Effect, and Its Impact on Patient Prognosis. Nutrients 2023; 15:nu15112592. [PMID: 37299554 DOI: 10.3390/nu15112592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) describes a heterogeneous group of human neoplasms of the head and neck with high rates of morbidity and mortality, constituting about 3% of all cancers and ~1.5% of all cancer deaths. HNSCC constituted the seventh most prevalent human malignancy and the most common human cancer in the world in 2020, according to multi-population observations conducted by the GLOBOCAN group. Since approximately 60-70% of patients present with stage III/IV neoplastic disease, HNSCC is still one of the leading causes of death in cancer patients worldwide, with an overall survival rate that is too low, not exceeding 40-60% of these patients. Despite the application of newer surgical techniques and the implementation of modern combined oncological treatment, the disease often follows a fatal course due to frequent nodal metastases and local neoplastic recurrences. The role of micronutrients in the initiation, development, and progression of HNSCC has been the subject of considerable research. Of particular interest has been vitamin D, the pleiotropic biologically active fat-soluble family of secosteroids (vitamin-D-like steroids), which constitutes a key regulator of bone, calcium, and phosphate homeostasis, as well as carcinogenesis and the further development of various neoplasms. Considerable evidence suggests that vitamin D plays a key role in cellular proliferation, angiogenesis, immunity, and cellular metabolism. A number of basic science, clinical, and epidemiological studies indicate that vitamin D has multidirectional biological effects and influences anti-cancer intracellular mechanisms and cancer risk, and that vitamin D dietary supplements have various prophylactic benefits. In the 20th century, it was reported that vitamin D may play various roles in the protection and regulation of normal cellular phenotypes and in cancer prevention and adjunctive therapy in various human neoplasms, including HNSCC, by regulating a number of intracellular mechanisms, including control of tumour cell expansion and differentiation, apoptosis, intercellular interactions, angio- and lymphogenesis, immune function, and tumour invasion. These regulatory properties mainly occur indirectly via epigenetic and transcriptional changes regulating the function of transcription factors, chromatin modifiers, non-coding RNA (ncRNAs), and microRNAs (miRs) through protein-protein interactions and signalling pathways. In this way, calcitriol enhances intercellular communication in cancer biology, restores the connection with the extracellular matrix, and promotes the epithelial phenotype; it thus counteracts the tumour-associated detachment from the extracellular matrix and inhibits the formation of metastases. Furthermore, the confirmation that the vitamin D receptor (VDR) is present in many human tissues confirmed the physiopathological significance of vitamin D in various human tumours. Recent studies indicate quantitative associations between exposure to vitamin D and the incidence of HNC, i.e., cancer risk assessment included circulating calcidiol plasma/serum concentrations, vitamin D intake, the presence of the VDR gene polymorphism, and genes involved in the vitamin D metabolism pathway. Moreover, the chemopreventive efficacy of vitamin D in precancerous lesions of the head and neck and their role as predictors of mortality, survival, and recurrence of head and neck cancer are also widely discussed. As such, it may be considered a promising potential anti-cancer agent for developing innovative methods of targeted therapy. The proposed review discusses in detail the mechanisms regulating the relationship between vitamin D and HNSCC. It also provides an overview of the current literature, including key opinion-forming systematic reviews as well as epidemiological, prospective, longitudinal, cross-sectional, and interventional studies based on in vitro and animal models of HNSCC, all of which are accessible via the PubMed/Medline/EMBASE/Cochrane Library databases. This article presents the data in line with increasing clinical credibility.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
10
|
Gonçalves LED, Andrade-Silva M, Basso PJ, Câmara NOS. Vitamin D and chronic kidney disease: Insights on lipid metabolism of tubular epithelial cell and macrophages in tubulointerstitial fibrosis. Front Physiol 2023; 14:1145233. [PMID: 37064892 PMCID: PMC10090472 DOI: 10.3389/fphys.2023.1145233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Chronic kidney disease (CKD) has been recognized as a significant global health problem due to being an important contributor to morbidity and mortality. Inflammation is the critical event that leads to CKD development orchestrated by a complex interaction between renal parenchyma and immune cells. Particularly, the crosstalk between tubular epithelial cells (TECs) and macrophages is an example of the critical cell communication in the kidney that drives kidney fibrosis, a pathological feature in CKD. Metabolism dysregulation of TECs and macrophages can be a bridge that connects inflammation and fibrogenesis. Currently, some evidence has reported how cellular lipid disturbances can affect kidney disease and cause tubulointerstitial fibrosis highlighting the importance of investigating potential molecules that can restore metabolic parameters. Vitamin D (VitD) is a hormone naturally produced by mammalian cells in a coordinated manner by the skin, liver, and kidneys. VitD deficiency or insufficiency is prevalent in patients with CKD, and serum levels of VitD are inversely correlated with the degree of kidney inflammation and renal function. Proximal TECs and macrophages produce the active form of VitD, and both express the VitD receptor (VDR) that evidence the importance of this nutrient in regulating their functions. However, whether VitD signaling drives physiological and metabolism improvement of TECs and macrophages during kidney injury is an open issue to be debated. In this review, we brought to light VitD as an important metabolic modulator of lipid metabolism in TECs and macrophages. New scientific approaches targeting VitD e VDR signaling at the cellular metabolic level can provide a better comprehension of its role in renal physiology and CKD progression.
Collapse
Affiliation(s)
- Luís Eduardo D. Gonçalves
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Magaiver Andrade-Silva
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Experimental e Clinical Immunology, Department of Clinical Medicine, Faculty of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Paulo José Basso
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Paulo José Basso, ; Niels O. S. Câmara,
| | - Niels O. S. Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Experimental e Clinical Immunology, Department of Clinical Medicine, Faculty of Medicine, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Paulo José Basso, ; Niels O. S. Câmara,
| |
Collapse
|
11
|
Vrieling F, Stienstra R. Obesity and dysregulated innate immune responses: impact of micronutrient deficiencies. Trends Immunol 2023; 44:217-230. [PMID: 36709082 DOI: 10.1016/j.it.2023.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/28/2023]
Abstract
Obesity is associated with the development of various complications, including diabetes, atherosclerosis, and an increased risk for infections, driven by dysfunctional innate immune responses. Recent insights have revealed that the availability of nutrients is a key determinant of innate immune cell function. Although the presence of obesity is associated with overnutrition of macronutrients, several micronutrient deficiencies, including Vitamin D and zinc, are often present. Micronutrients have been attributed important immunomodulatory roles. In this review, we summarize current knowledge of the immunomodulatory effects of Vitamin D and zinc. We also suggest future lines of research to further improve our understanding of these micronutrients; this may serve as a stepping-stone to explore micronutrient supplementation to improve innate immune cell function during obesity.
Collapse
Affiliation(s)
- Frank Vrieling
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Rinke Stienstra
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands; Department of Internal Medicine, RadboudUMC, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Vitamin D in Health and Disease. Biomedicines 2022; 11:biomedicines11010010. [PMID: 36672517 PMCID: PMC9855922 DOI: 10.3390/biomedicines11010010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamin D (VD) is a fat-soluble hormone that plays a fundamental role not only in calcium homeostasis and bone metabolism, but also has anti-inflammatory and antioxidant properties, acting on both innate and adaptive immunity [...].
Collapse
|
13
|
Lee Y, Yoon JW, Kim YA, Choi HJ, Yoon BW, Seo JH. A Genome-Wide Association Study of Genetic Variants of Apolipoprotein A1 Levels and Their Association with Vitamin D in Korean Cohorts. Genes (Basel) 2022; 13:genes13091553. [PMID: 36140721 PMCID: PMC9498618 DOI: 10.3390/genes13091553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
Dyslipidemia is an important independent risk factor for cardiovascular disease (CVD). Specifically, apolipoprotein A1 (ApoA1), apolipoprotein B (ApoB), and the ApoB/A1 ratio have been linked to CVD. We conducted a genome-wide association study meta-analysis of two Korean cohorts containing a total of 12,924 patients to identify novel single nucleotide polymorphisms (SNPs) associated with ApoA1 and ApoB levels and the ApoB/A1 ratio. Additionally, an expression quantitative trait locus (eQTL) and differentially expressed genes (DEGs) analysis were performed. The statistically significant eQTL, DEG, and Gene Ontology (GO) results were used to explore the predicted interaction networks and retrieve the interacting genes and proteins. We identified three novel SNPs (rs11066280, p = 3.46 × 10−21; rs1227162, p = 2.98 × 10−15; rs73216931, p = 5.62 × 10−9) associated with ApoA1. SNP rs73216931 was an eQTL for KMT5A in the pancreas and whole blood. The network analysis revealed that HECTD4 and MYL2:LINC1405 are associated with AKT1. Our in silico analysis of ApoA1 genetic variants revealed heart muscle-related signals. ApoA1 also correlated positively with vitamin D, and genes associated with ApoA1 and vitamin D were found. Our data imply that more research into ApoA1 is needed to understand the links between dyslipidemia and CVD and vitamin D and CVD.
Collapse
Affiliation(s)
- Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Korea
- Department of Applied Statistics, Chung-Ang University, Seoul 06974, Korea
| | - Ji Won Yoon
- Healthcare System Gangnam Center, Seoul National University Hospital, Seoul 06236, Korea
| | - Ye An Kim
- Division of Endocrinology, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul 05368, Korea
| | - Hyuk Jin Choi
- Healthcare System Gangnam Center, Seoul National University Hospital, Seoul 06236, Korea
| | - Byung Woo Yoon
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Korea
- Correspondence: ; Tel.: +82-2-2225-1445; Fax: +82-2-2225-3950
| |
Collapse
|