1
|
Chen X, Li Y, Su J, Zhang L, Liu H. Progression in Near-Infrared Fluorescence Imaging Technology for Lung Cancer Management. BIOSENSORS 2024; 14:501. [PMID: 39451714 PMCID: PMC11506746 DOI: 10.3390/bios14100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Lung cancer is a major threat to human health and a leading cause of death. Accurate localization of tumors in vivo is crucial for subsequent treatment. In recent years, fluorescent imaging technology has become a focal point in tumor diagnosis and treatment due to its high sensitivity, strong selectivity, non-invasiveness, and multifunctionality. Molecular probes-based fluorescent imaging not only enables real-time in vivo imaging through fluorescence signals but also integrates therapeutic functions, drug screening, and efficacy monitoring to facilitate comprehensive diagnosis and treatment. Among them, near-infrared (NIR) fluorescence imaging is particularly prominent due to its improved in vivo imaging effect. This trend toward multifunctionality is a significant aspect of the future advancement of fluorescent imaging technology. In the past years, great progress has been made in the field of NIR fluorescence imaging for lung cancer management, as well as the emergence of new problems and challenges. This paper generally summarizes the application of NIR fluorescence imaging technology in these areas in the past five years, including the design, detection principles, and clinical applications, with the aim of advancing more efficient NIR fluorescence imaging technologies to enhance the accuracy of tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Xinglong Chen
- Thoracic Medicine Department 1, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, China; (X.C.); (Y.L.); (J.S.)
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuning Li
- Thoracic Medicine Department 1, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, China; (X.C.); (Y.L.); (J.S.)
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jialin Su
- Thoracic Medicine Department 1, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, China; (X.C.); (Y.L.); (J.S.)
| | - Lemeng Zhang
- Thoracic Medicine Department 1, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, China; (X.C.); (Y.L.); (J.S.)
| | - Hongwen Liu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China;
| |
Collapse
|
2
|
Suzuki M, Kobayashi H, Hanaoka H. Evaluation of a Novel Lateral Emitting Laser Fiber for Near-Infrared Photoimmunotherapy. Cancers (Basel) 2024; 16:2558. [PMID: 39061197 PMCID: PMC11274731 DOI: 10.3390/cancers16142558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer therapy that uses NIR light and conjugates of a tumor-targeting monoclonal antibody and phthalocyanine dye. In clinical practice, frontal and cylindrical diffusers are the only options for NIR illumination. However, illumination in a narrow space is technically difficult with such diffusers. Therefore, we evaluated a lateral illumination system using a lateral emitting laser (LEL) fiber. The LEL fiber illuminated a certain area in a lateral direction. NIR-PIT with an LEL fiber reduced luciferase activity in a light-dose-dependent manner in A431-GFP-luc cells in vitro and significantly suppressed tumor proliferation in a xenograft mouse model. To evaluate the usefulness of the LEL fiber in the illumination of a narrow space, a tumor was illuminated from the inside of a cylinder, mimicking a narrow space, and the fluorescence intensity in the tumor was monitored. In the frontal diffuser, NIR light was unevenly delivered and little light reached a distal tumor area from the illuminated side. By contrast, the LEL fiber allowed a uniform illumination of the entire tumor, and a loss of fluorescence was observed even in distal areas. These findings suggested that the LEL fiber can be used for NIR-PIT and is suitable for NIR light illumination in a narrow space.
Collapse
Affiliation(s)
- Motofumi Suzuki
- Division of Fundamental Technology Development, Near InfraRed Photo-ImmunoTherapy Research Institute, Kansai Medical University, Hirakata 573-1010, Osaka, Japan;
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1088, USA;
| | - Hirofumi Hanaoka
- Division of Fundamental Technology Development, Near InfraRed Photo-ImmunoTherapy Research Institute, Kansai Medical University, Hirakata 573-1010, Osaka, Japan;
| |
Collapse
|
3
|
Matsuoka K, Yamada M, Fukatsu N, Goto K, Shimizu M, Kato A, Kato Y, Yukawa H, Baba Y, Sato M, Sato K. Contrast-enhanced ultrasound imaging for monitoring the efficacy of near-infrared photoimmunotherapy. EBioMedicine 2023; 95:104737. [PMID: 37558554 PMCID: PMC10505829 DOI: 10.1016/j.ebiom.2023.104737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Near-infrared photoimmunotherapy (NIR-PIT) is a promising cancer therapy combining NIR-light irradiation with an antibody and IR700DX, a light-sensitive substance, to destroy tumours. However, homogeneous irradiation is difficult because the light varies depending on the distance and tissue environment. Therefore, markers that indicate sufficient irradiation are necessary. Nanoparticles sized 10∼200 nm show enhanced permeation and retention within tumours, which is further enhanced via NIR-PIT (super enhanced permeability and retention, SUPR). We aimed to monitor the effectiveness of NIR-PIT by measuring SUPR. METHODS A xenograft mouse tumour model was established by inoculating human cancer cells in both buttocks of Balb/C-nu/nu mice, and NIR-PIT was performed on only one side. To evaluate SUPR, fluorescent signal examination was performed using QD800-fluorescent nanoparticles and NIR-fluorescent poly (d,l-lactide-co-glycolic acid) (NIR-PLGA) microparticles. Harmonic signals were evaluated using micro-bubbles of the contrast agent Sonazoid and contrast-enhanced ultrasound (CEUS) imaging. The correlation between SUPR immediately after treatment and NIR-PIT effectiveness on the day after treatment was evaluated. FINDINGS QD800 fluorescent signals persisted only in the treated tumours, and the intensity of remaining signals showed high positive correlation with the therapeutic effect. NIR-PLGA fluorescent signals and Sonazoid-derived harmonic signals remained for a longer time in the treated tumours than in the controls, and the kE value of the two-compartment model correlated with NIR-PIT effectiveness. INTERPRETATION SUPR measurement using Sonazoid and CEUS imaging could be easily adapted for clinical use as a therapeutic image-based biomarker for monitoring and confirming of NIR-PIT efficacy. FUNDING This research was supported by ARIM JAPAN of MEXT, the Program for Developing Next-generation Researchers (Japan Science and Technology Agency), KAKEN (18K15923, 21K07217) (JSPS), CREST (JPMJCR19H2, JST), and FOREST-Souhatsu (JST). Mochida Memorial Foundation for Medical and Pharmaceutical Research; Takeda Science Foundation; The Japan Health Foundation; and Princess Takamatsu Cancer Research Fund. Funders only provided financial support and had no role in the study design, data collection, data analysis, interpretation, and writing of the report.
Collapse
Affiliation(s)
- Kohei Matsuoka
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Mizuki Yamada
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Noriaki Fukatsu
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan
| | - Kyoichi Goto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Japan
| | - Misae Shimizu
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan
| | - Ayako Kato
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan
| | - Yoshimi Kato
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan
| | - Hiroshi Yukawa
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan; Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Japan; National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Life and Medical Science, Japan; Development of Quantum-nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Japan; National Institutes for Quantum Science and Technology, Institute for Quantum Life Science, Quantum Life and Medical Science, Japan; Development of Quantum-nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Japan
| | - Mitsuo Sato
- Division of Host Defense Sciences, Dept. of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Japan
| | - Kazuhide Sato
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Japan; Development of Quantum-nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Japan; Nagoya University Graduate School of Medicine, Japan; FOREST-Souhatsu, JST, Tokyo, Japan.
| |
Collapse
|
4
|
Yamada M, Matsuoka K, Sato M, Sato K. Recent Advances in Localized Immunomodulation Technology: Application of NIR-PIT toward Clinical Control of the Local Immune System. Pharmaceutics 2023; 15:pharmaceutics15020561. [PMID: 36839882 PMCID: PMC9967863 DOI: 10.3390/pharmaceutics15020561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Current immunotherapies aim to modulate the balance among different immune cell populations, thereby controlling immune reactions. However, they often cause immune overactivation or over-suppression, which makes them difficult to control. Thus, it would be ideal to manipulate immune cells at a local site without disturbing homeostasis elsewhere in the body. Recent technological developments have enabled the selective targeting of cells and tissues in the body. Photo-targeted specific cell therapy has recently emerged among these. Near-infrared photoimmunotherapy (NIR-PIT) has surfaced as a new modality for cancer treatment, which combines antibodies and a photoabsorber, IR700DX. NIR-PIT is in testing as an international phase III clinical trial for locoregional recurrent head and neck squamous cell carcinoma (HNSCC) patients (LUZERA-301, NCT03769506), with a fast-track designation by the United States Food and Drug Administration (US-FDA). In Japan, NIR-PIT for patients with recurrent head and neck cancer was conditionally approved in 2020. Although NIR-PIT is commonly used for cancer therapy, it could also be exploited to locally eliminate certain immune cells with antibodies for a specific immune cell marker. This strategy can be utilized for anti-allergic therapy. Herein, we discuss the recent technological advances in local immunomodulation technology. We introduce immunomodulation technology with NIR-PIT and demonstrate an example of the knockdown of regulatory T cells (Tregs) to enhance local anti-tumor immune reactions.
Collapse
Affiliation(s)
- Mizuki Yamada
- Division of Host Defense Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Kohei Matsuoka
- Division of Host Defense Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Mitsuo Sato
- Division of Host Defense Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673, Japan
| | - Kazuhide Sato
- B3 Unit Frontier, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), Nagoya University Institute for Advanced Research, Nagoya 466-8550, Japan
- FOREST-Souhatsu, CREST, JST, Tokyo 102-0076, Japan
- Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan
- Correspondence: ; Tel.: +81-052-744-2167; Fax: +81-052-744-2176
| |
Collapse
|
5
|
Near-Infrared Photoimmunotherapy for Thoracic Cancers: A Translational Perspective. Biomedicines 2022; 10:biomedicines10071662. [PMID: 35884975 PMCID: PMC9312913 DOI: 10.3390/biomedicines10071662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022] Open
Abstract
The conventional treatment of thoracic tumors includes surgery, anticancer drugs, radiation, and cancer immunotherapy. Light therapy for thoracic tumors has long been used as an alternative; conventional light therapy also called photodynamic therapy (PDT) has been used mainly for early-stage lung cancer. Recently, near-infrared photoimmunotherapy (NIR-PIT), which is a completely different concept from conventional PDT, has been developed and approved in Japan for the treatment of recurrent and previously treated head and neck cancer because of its specificity and effectiveness. NIR-PIT can apply to any target by changing to different antigens. In recent years, it has become clear that various specific and promising targets are highly expressed in thoracic tumors. In combination with these various specific targets, NIR-PIT is expected to be an ideal therapeutic approach for thoracic tumors. Additionally, techniques are being developed to further develop NIR-PIT for clinical practice. In this review, NIR-PIT is introduced, and its potential therapeutic applications for thoracic cancers are described.
Collapse
|