1
|
Ojaimi RE, Cheisson G, Cosson E, Ichai C, Jacqueminet S, Nicolescu-Catargi B, Ouattara A, Tauveron I, Valensi P, Benhamou D. Recent advances in perioperative care of patients using new antihyperglycaemic drugs and devices dedicated to diabetes. Anaesth Crit Care Pain Med 2025; 44:101468. [PMID: 39743045 DOI: 10.1016/j.accpm.2024.101468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/28/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Rami El Ojaimi
- Department of Anaesthesia and Intensive Care Medicine, Hôpital Henri Mondor, AP-HP, 1, rue Gustave Eiffel, 94000, Créteil, France.
| | - Gaëlle Cheisson
- Department of Anaesthesia and Intensive Care Medicine, Hôpital Bicêtre, AP-HP, 78, rue du Général-Leclerc, 94275 Le Kremlin-Bicêtre, France
| | - Emmanuel Cosson
- Department of Endocrinology-Diabetology-Nutrition, Avicenne Hospital, University of Paris 13, Sorbonne Paris Cité, CRNH-IdF, CINFO, AP-HP, Bobigny, France; Recherche en Epidémiologie Nutritionnelle (EREN), Université Sorbonne Paris Nord and Université Paris Cité, INSERM, INRAE, CNAM, Center of Research in Epidemiology and StatisticS (CRESS), Bobigny, France
| | - Carole Ichai
- Department of Intensive Care Medicine, Université Côte d'Azur, Hôpital Pasteur 2, CHU de Nice, 30, voie Romaine, 06001 Nice cedex 1, France
| | - Sophie Jacqueminet
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris (APHP), Diabetology Department, La Pitié Salpêtrière-Charles Foix University Hospital, Institute of Cardiometabolism and Nutrition ICAN, Paris, France
| | - Bogdan Nicolescu-Catargi
- Department of Endocrinology ad Metabolic Diseases, Hôpital Saint-André, Bordeaux University Hospital, 1, rue Jean-Burguet, 33000 Bordeaux, France
| | - Alexandre Ouattara
- CHU Bordeaux, Department of Cardiovascular Anaesthesia and Critical Care, F-33000 Bordeaux, France; Univ. Bordeaux, INSERM, UMR 1034, Biology of Cardiovascular Diseases, F-33600 Pessac, France
| | - Igor Tauveron
- Department of Endocrinology and Diabetology, Clermont Ferrand University Hospital, 58, rue Montalembert, 63000 Clermont-Ferrand, France
| | - Paul Valensi
- Polyclinique d'Aubervilliers, Aubervilliers and Université Paris-Nord, Bobigny, France
| | - Dan Benhamou
- Department of Anaesthesia and Intensive Care Medicine, Hôpital Bicêtre, AP-HP, 78, rue du Général-Leclerc, 94275 Le Kremlin-Bicêtre, France.
| |
Collapse
|
2
|
Gong XX, Cao LH, Ni HX, Zang ZY, Chang H. Chinese herbal medicine for the treatment of diabetic nephropathy: From clinical evidence to potential mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118179. [PMID: 38636575 DOI: 10.1016/j.jep.2024.118179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic nephropathy (DN) is a typical chronic microvascular complication of diabetes, characterized by proteinuria and a gradual decline in renal function. At present, there are limited clinical interventions aimed at preventing the progression of DN to end-stage renal disease (ESRD). However, Chinese herbal medicine presents a distinct therapeutic approach that can be effectively combined with conventional Western medicine treatments to safeguard renal function. This combination holds considerable practical implications for the treatment of DN. AIM OF THE STUDY This review covers commonly used Chinese herbal remedies and decoctions applicable to various types of DN, and we summarize the role played by their active ingredients in the treatment of DN and their mechanisms, which includes how they might improve inflammation and metabolic abnormalities to provide new ideas to cope with the development of DN. MATERIALS AND METHODS With the keywords "diabetic nephropathy," "Chinese herbal medicine," "clinical effectiveness," and "bioactive components," we conducted an extensive literature search of several databases, including PubMed, Web of Science, CNKI, and Wanfang database, to discover studies on herbal formulas that were effective in slowing the progression of DN. The names of the plants covered in the review have been checked at MPNS (http://mpns.kew.org). RESULTS This review demonstrates the superior total clinical effective rate of combining Chinese herbal medicines with Western medicines over the use of Western medicines alone, as evidenced by summarizing the results of several clinical trials. Furthermore, the review highlights the nephroprotective effects of seven frequently used herbs exerting beneficial effects such as podocyte repair, anti-fibrosis of renal tissues, and regulation of glucose and lipid metabolism through multiple signaling pathways in the treatment of DN. CONCLUSIONS The potential of herbs in treating DN is evident from their excellent effectiveness and the ability of different herbs to target various symptoms of the condition. However, limitations arise from the deficiencies in interfacing with objective bioindicators, which hinder the integration of herbal therapies into modern medical practice. Further research is warranted to address these limitations and enhance the compatibility of herbal therapies with contemporary medical standards.
Collapse
Affiliation(s)
- Xiao-Xiao Gong
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Lin-Hai Cao
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Hong-Xia Ni
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Zi-Yan Zang
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Hui Chang
- College of Food Science, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Peride I, Anastasiu M, Serban SA, Tiglis M, Ene R, Nechita AM, Neagu TP, Checherita IA, Niculae A. The Key Role of Nutritional Intervention in Delaying Disease Progression and the Therapeutic Management of Diabetic Kidney Disease-A Challenge for Physicians and Patients. J Pers Med 2024; 14:778. [PMID: 39201970 PMCID: PMC11355100 DOI: 10.3390/jpm14080778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic kidney disease (CKD) represents an increasingly common pathology that affects patients' quality of life, and it is frequently associated with a high mortality rate, especially in the final stages of the disease. At the same time, diabetes mellitus is a chronic disease that contributes to the increased number of patients with CKD through diabetic kidney disease (DKD). The alternation of hypoglycemia with hyperglycemia is a condition in the occurrence of microvascular complications of diabetes, including DKD, which involves structural and functional changes in the kidneys. The therapeutic management of diabetic nephropathy is a much-discussed topic, both from nutritional medical recommendations and a pharmacotherapy perspective. The diet starting point for patients with DKD is represented by a personalized and correct adjustment of macro- and micronutrients. The importance of nutritional status in DKD patients is given by the fact that it represents a modifiable factor, which contributes to the evolution and prognosis of the disease. Since, in most cases, it is necessary to restrict many types of food, malnutrition must be considered and avoided as much as possible.
Collapse
Affiliation(s)
- Ileana Peride
- Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Miruna Anastasiu
- “Marie Skłodowska Curie” Children Emergency Clinical Hospital, 077120 Bucharest, Romania
| | | | - Mirela Tiglis
- Department of Anesthesia and Intensive Care, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Razvan Ene
- Clinical Department No. 14, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ana-Maria Nechita
- Department of Nephrology and Dialysis, “St. John” Emergency Clinical Hospital, 042122 Bucharest, Romania
| | - Tiberiu Paul Neagu
- Clinical Department No. 11, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | | | - Andrei Niculae
- Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
4
|
Fan Q, Li R, Wei H, Xue W, Li X, Xia Z, Zhao L, Qiu Y, Cui D. Research Progress of Pyroptosis in Diabetic Kidney Disease. Int J Mol Sci 2024; 25:7130. [PMID: 39000237 PMCID: PMC11241146 DOI: 10.3390/ijms25137130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Pyroptosis, known as one typical mode of programmed cell death, is generally characterized by the cleaved gasdermin family (GSDMs) forming pores in the cell membrane and inducing cell rupture, and the activation of aspartate-specific proteases (caspases) has also been found during this process. Diabetic Kidney Disease (DKD) is caused by the complication of diabetes in the kidney, and the most important kidney's function, Glomerular Filtration Rate (GFR), happens to drop to less than 90% of its usual and even lead to kidney failure in severe cases. The persistent inflammatory state induced by high blood glucose implies the key pathology of DKD, and growing evidence shows that pyroptosis serves as a significant contributor to this chronic immune-mediated inflammatory disorder. Currently, the expanded discovery of GSDMs, pyroptosis, and its association with innate immunity has been more attractive, and overwhelming research is needed to sort out the implication of pyroptosis in DKD pathology. In this review, we comb both classical studies and newly founds on pyroptosis, prick off the novel awakening of pyroptosis in DKD, and center on the significance of pyroptosis in DKD treatment, aiming to provide new research targets and treatment strategies on DKD.
Collapse
Affiliation(s)
- Qingqing Fan
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Rongxuan Li
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Huiting Wei
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Weiyue Xue
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Xiang Li
- Department of Physical Education, Jiangnan University, Wuxi 214122, China
| | - Ziyao Xia
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Le Zhao
- Department of Physical Education, Hunan University, Changsha 410000, China
| | - Ye Qiu
- The State Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410000, China
| | - Di Cui
- Department of Physical Education, Hunan University, Changsha 410000, China
- The State Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410000, China
| |
Collapse
|
5
|
Huang J, Yeung AM, Armstrong DG, Battarbee AN, Cuadros J, Espinoza JC, Kleinberg S, Mathioudakis N, Swerdlow MA, Klonoff DC. Artificial Intelligence for Predicting and Diagnosing Complications of Diabetes. J Diabetes Sci Technol 2023; 17:224-238. [PMID: 36121302 PMCID: PMC9846408 DOI: 10.1177/19322968221124583] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Artificial intelligence can use real-world data to create models capable of making predictions and medical diagnosis for diabetes and its complications. The aim of this commentary article is to provide a general perspective and present recent advances on how artificial intelligence can be applied to improve the prediction and diagnosis of six significant complications of diabetes including (1) gestational diabetes, (2) hypoglycemia in the hospital, (3) diabetic retinopathy, (4) diabetic foot ulcers, (5) diabetic peripheral neuropathy, and (6) diabetic nephropathy.
Collapse
Affiliation(s)
| | | | - David G. Armstrong
- Keck School of Medicine, University of
Southern California, Los Angeles, CA, USA
| | - Ashley N. Battarbee
- Center for Women’s Reproductive Health,
The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jorge Cuadros
- Meredith Morgan Optometric Eye Center,
University of California, Berkeley, Berkeley, CA, USA
| | - Juan C. Espinoza
- Children’s Hospital Los Angeles,
University of Southern California, Los Angeles, CA, USA
| | | | | | - Mark A. Swerdlow
- Keck School of Medicine, University of
Southern California, Los Angeles, CA, USA
| | - David C. Klonoff
- Diabetes Technology Society,
Burlingame, CA, USA
- Diabetes Research Institute,
Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
6
|
Glycation-Associated Diabetic Nephropathy and the Role of Long Noncoding RNAs. Biomedicines 2022; 10:biomedicines10102623. [PMID: 36289886 PMCID: PMC9599575 DOI: 10.3390/biomedicines10102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
The glycation of various biomolecules is the root cause of many pathological conditions associated with diabetic nephropathy and end-stage kidney disease. Glycation imbalances metabolism and increases renal cell injury. Numerous therapeutic measures have narrowed down the adverse effects of endogenous glycation, but efficient and potent measures are miles away. Recent advances in the identification and characterization of noncoding RNAs, especially the long noncoding RNAs (lncRNAs), have opened a mammon of new biology to explore the mitigations for glycation-associated diabetic nephropathy. Furthermore, tissue-specific distribution and condition-specific expression make lncRNA a promising key for second-generation therapeutic interventions. Though the techniques to identify and exemplify noncoding RNAs are rapidly evolving, the lncRNA study encounters multiple methodological constraints. This review will discuss lncRNAs and their possible involvement in glycation and advanced glycation end products (AGEs) signaling pathways. We further highlight the possible approaches for lncRNA-based therapeutics and their working mechanism for perturbing glycation and conclude our review with lncRNAs biology-related future opportunities.
Collapse
|
7
|
Dabravolski SA, Markin AM, Andreeva ER, Eremin II, Orekhov AN, Melnichenko AA. Molecular Mechanisms Underlying Pathological and Therapeutic Roles of Pericytes in Atherosclerosis. Int J Mol Sci 2022; 23:11663. [PMID: 36232962 PMCID: PMC9570222 DOI: 10.3390/ijms231911663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Pericytes are multipotent mesenchymal stromal cells playing an active role in angiogenesis, vessel stabilisation, maturation, remodelling, blood flow regulation and are able to trans-differentiate into other cells of the mesenchymal lineage. In this review, we summarised recent data demonstrating that pericytes play a key role in the pathogenesis and development of atherosclerosis (AS). Pericytes are involved in lipid accumulation, inflammation, growth, and vascularization of the atherosclerotic plaque. Decreased pericyte coverage, endothelial and pericyte dysfunction is associated with intraplaque angiogenesis and haemorrhage, calcification and cholesterol clefts deposition. At the same time, pericytes can be used as a novel therapeutic target to promote vessel maturity and stability, thus reducing plaque vulnerability. Finally, we discuss recent studies exploring effective AS treatments with pericyte-mediated anti-atherosclerotic, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, ORT Braude College, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Alexander M. Markin
- Petrovsky National Research Center of Surgery, Abrikosovsky Lane, 2, 119991 Moscow, Russia
| | - Elena R. Andreeva
- Laboratory of Cell Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| | - Ilya I. Eremin
- Petrovsky National Research Center of Surgery, Abrikosovsky Lane, 2, 119991 Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
| | | |
Collapse
|
8
|
Liu C, Wu K, Gao H, Li J, Xu X. Current Strategies and Potential Prospects for Nanoparticle-Mediated Treatment of Diabetic Nephropathy. Diabetes Metab Syndr Obes 2022; 15:2653-2673. [PMID: 36068795 PMCID: PMC9441178 DOI: 10.2147/dmso.s380550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic nephropathy (DN), a severe microvascular complication of diabetes mellitus (DM), is the most common form of chronic kidney disease (CKD) and a leading cause of renal failure in end-stage renal disease. No currently available treatment can achieve complete cure. Traditional treatments have many limitations, such as painful subcutaneous insulin injections, nephrotoxicity and hepatotoxicity with oral medication, and poor patient compliance with continual medication intake. Given the known drawbacks, recent research has suggested that nanoparticle-based drug delivery platforms as therapeutics may provide a promising strategy for treating debilitating diseases such as DN in the future. This administration method provides multiple advantages, such as delivering the loaded drug to the precise target of action and enabling early prevention of CKD progression. This article discusses the development of the main currently used nanoplatforms, such as liposomes, polymeric NPs, and inorganic NPs, as well as the prospects and drawbacks of nanoplatform application in the treatment of CKD.
Collapse
Affiliation(s)
- Chunkang Liu
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Kunzhe Wu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Huan Gao
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jianyang Li
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiaohua Xu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence: Xiaohua Xu, Email
| |
Collapse
|