1
|
Acharya A, Roy N, Newaskar V, Rai A, Ghosh A, Nagpure M, Giri SK, Sahni G, Guchhait SK. Topoisomerase II-targeting anticancer clinical candidates and drugs: A critical analysis, unravelling molecular medicinal insights and promising research roadmap. Eur J Med Chem 2025; 291:117611. [PMID: 40249970 DOI: 10.1016/j.ejmech.2025.117611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/25/2025] [Accepted: 04/05/2025] [Indexed: 04/20/2025]
Abstract
In recent years, the USFDA-approved drug molecules are being frequently analyzed to provide perspectives and strategies for novel therapeutic discovery and development. Some of the remarkable analyses include physicochemical properties of drugs relevant to oral bioavailability, frequent presence of drug relevant-structural motifs, natural products as sources of new drugs, and synthetic approaches to new drugs. In this review article, for the first time, we present a structure-function analysis of human topoisomerase II (hTopo II) inhibitors those are currently clinically used or under clinical trials for anticancer treatment. The case studies and a critical molecular medicinal insight for their therapeutic development have been presented. The review illustrates various key aspects: the hTopo II inhibitors' molecular modulations, common pharmacophores, interactions at molecular level crucial for inhibition of enzyme at its various stages of catalytic function, and network polypharmacology of Topo II with different targets. Numerous toxicophore motifs have been identified, which provide important alerts while designing and discovering novel therapeutic agents. A range of innovative approaches including property-focused strategies, ADCs, and Click Activated Protodrugs Against Cancer (CAPAC) that have addressed challenges faced in the hTopo II-based therapeutic development have been discussed. The analysis with perspectives represents a valuable educational and research resource that will encourage hTopo II-inhibition and its network polypharmacology based drug discovery studies.
Collapse
Affiliation(s)
- Ayan Acharya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab, 160062, India
| | - Nibedita Roy
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab, 160062, India
| | - Vaishnavi Newaskar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab, 160062, India
| | - Abhishek Rai
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab, 160062, India
| | - Abhrajyoti Ghosh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab, 160062, India
| | - Mithilesh Nagpure
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab, 160062, India
| | - Santosh Kumar Giri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab, 160062, India
| | - Gautam Sahni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab, 160062, India
| | - Sankar K Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
2
|
Khagi S, Kotecha R, Gatson NTN, Jeyapalan S, Abdullah HI, Avgeropoulos NG, Batzianouli ET, Giladi M, Lustgarten L, Goldlust SA. Recent advances in Tumor Treating Fields (TTFields) therapy for glioblastoma. Oncologist 2025; 30:oyae227. [PMID: 39401002 PMCID: PMC11883162 DOI: 10.1093/oncolo/oyae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024] Open
Abstract
Tumor Treating Fields (TTFields) therapy is a locoregional, anticancer treatment consisting of a noninvasive, portable device that delivers alternating electric fields to tumors through arrays placed on the skin. Based on efficacy and safety data from global pivotal (randomized phase III) clinical studies, TTFields therapy (Optune Gio) is US Food and Drug Administration-approved for newly diagnosed (nd) and recurrent glioblastoma (GBM) and Conformité Européenne-marked for grade 4 glioma. Here we review data on the multimodal TTFields mechanism of action that includes disruption of cancer cell mitosis, inhibition of DNA replication and damage response, interference with cell motility, and enhancement of systemic antitumor immunity (adaptive immunity). We describe new data showing that TTFields therapy has efficacy in a broad range of patients, with a tolerable safety profile extending to high-risk subpopulations. New analyses of clinical study data also confirmed that overall and progression-free survival positively correlated with increased usage of the device and dose of TTFields at the tumor site. Additionally, pilot/early phase clinical studies evaluating TTFields therapy in ndGBM concomitant with immunotherapy as well as radiotherapy have shown promise, and new pivotal studies will explore TTFields therapy in these settings. Finally, we review recent and ongoing studies in patients in pediatric care, other central nervous system tumors and brain metastases, as well as other advanced-stage solid tumors (ie, lung, ovarian, pancreatic, gastric, and hepatic cancers), that highlight the broad potential of TTFields therapy as an adjuvant treatment in oncology.
Collapse
Affiliation(s)
- Simon Khagi
- Hoag Family Cancer Institute, Newport Beach, CA, United States
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Na Tosha N Gatson
- Neuro-Oncology Center of Excellence, Indiana University School of Medicine, Indianapolis, IN, United States
- IU Health Neuroscience & Simon Cancer Institutes, Indianapolis, IN, United States
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | | | | | | | | | | | | | - Samuel A Goldlust
- Department of Neuro-Oncology, Saint Luke’s Cancer Institute, Kansas City, MO, United States
| |
Collapse
|
3
|
Fukuta T, Kumbhojkar N, Prakash S, Shaha S, Silva‐Candal AD, Park KS, Mitragotri S. Immunotherapy against glioblastoma using backpack-activated neutrophils. Bioeng Transl Med 2025; 10:e10712. [PMID: 39801750 PMCID: PMC11711226 DOI: 10.1002/btm2.10712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/25/2024] [Accepted: 07/23/2024] [Indexed: 01/16/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent new therapeutic candidates against glioblastoma multiforme (GBM); however, their efficacy is clinically limited due to both local and systemic immunosuppressive environments. Hence, therapeutic approaches that stimulate local and systemic immune environments can improve the efficacy of ICIs. Here, we report an adoptive cell therapy employing neutrophils (NE) that are activated via surface attachment of drug-free disk-shaped backpacks, termed Cyto-Adhesive Micro-Patches (CAMPs) for treating GBM. CAMP-adhered neutrophils (NE/CAMPs) significantly improved the efficacy of an anti-PD1 antibody (aPD-1) in a subcutaneous murine GBM model (GL261). A combination of NE/CAMPs and aPD-1 completely regressed subcutaneous GL261 tumors in mice. The efficacy of NE/CAMPs against GBM was also tested in an orthotopic GL261 model. Neutrophil's ability to migrate into the brain was not affected by CAMP attachment, and intracerebral NE/CAMP accumulation was observed in mice-bearing orthotopic GBM. The combination treatment of NE/CAMPs and aPD-1 activated systemic immune responses mediated by T cells and showed improved therapeutic responses compared with aPD-1 alone in the orthotopic GBM model. These results suggest that immunomodulation with NE/CAMPs offers a potential approach for the treatment of GBM by combination with ICIs.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityBostonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
- Present address: Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, JapanWakayamaJapan
| | - Ninad Kumbhojkar
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityBostonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Supriya Prakash
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityBostonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Suyog Shaha
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityBostonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - A. Da Silva‐Candal
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityBostonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
- Present address: Neurovascular Diseases Laboratory, Neurology Service, University Hospital Complex of A Coruña, Biomedical Research InstituteA CoruñaSpain
| | - Kyung Soo Park
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityBostonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| | - Samir Mitragotri
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityBostonMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringBostonMassachusettsUSA
| |
Collapse
|
4
|
Kass L, Thang M, Zhang Y, DeVane C, Logan J, Tessema A, Perry J, Hingtgen S. Development of a biocompatible 3D hydrogel scaffold using continuous liquid interface production for the delivery of cell therapies to treat recurrent glioblastoma. Bioeng Transl Med 2024; 9:e10676. [PMID: 39545092 PMCID: PMC11558199 DOI: 10.1002/btm2.10676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 11/17/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor diagnosed in adults, carrying with it an extremely poor prognosis and limited options for effective treatment. Various cell therapies have emerged as promising candidates for GBM treatment but fail in the clinic due to poor tumor trafficking, poor transplantation efficiency, and high systemic toxicity. In this study, we design, characterize, and test a 3D-printed cell delivery platform that can enhance the survival of therapeutic cells implanted in the GBM resection cavity. Using continuous liquid interface production (CLIP) to generate a biocompatible 3D hydrogel, we demonstrate that we can effectively seed neural stem cells (NSCs) onto the surface of the hydrogel, and that the cells can proliferate to high densities when cultured for 14 days in vitro. We show that NSCs seeded on CLIP scaffolds persist longer than freely injected cells in vivo, proliferating to 20% higher than their original density in 6 days after implantation. Finally, we demonstrate that therapeutic fibroblasts seeded on CLIP more effectively suppress tumor growth and extend survival in a mouse model of LN229 GBM resection compared to the scaffold or therapeutic cells alone. These promising results demonstrate the potential to leverage CLIP to design hydrogels with various features to control the delivery of different types of cell therapies. Future work will include a more thorough evaluation of the immunological response to the material and improvement of the printing resolution for biocompatible aqueous resins.
Collapse
Affiliation(s)
- Lauren Kass
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Morrent Thang
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Yu Zhang
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Cathleen DeVane
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Julia Logan
- Department of Chemistry, UNC College of Arts and SciencesThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Addis Tessema
- Department of Chemistry, UNC College of Arts and SciencesThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Jillian Perry
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Center for Nanotechnology in Drug Delivery, Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Shawn Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
5
|
Iyer VJ, Donahue JE, Osman MA. Role of scaffold proteins in the heterogeneity of glioblastoma. Cell Commun Signal 2024; 22:477. [PMID: 39375741 PMCID: PMC11457365 DOI: 10.1186/s12964-024-01809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/24/2024] [Indexed: 10/09/2024] Open
Abstract
Glioblastoma (GB) is a highly heterogeneous type of incurable brain cancer with a low survival rate. Intensive ongoing research has identified several potential targets; however, GB is marred by the activation of multiple pathways, and thus common targets are highly sought. The signal regulatory scaffold IQGAP1 is an oncoprotein implicated in GB. IQGAP1 nucleates a myriad of pathways in a contextual manner and modulates many of the targets altered in GB like MAPK, NF-κB, and mTOR/PI3K/Akt1, thus positioning it as a plausible common therapeutic target. Here, we review the targets that are subjects of GB treatment clinical trials and the commonly used animal models that facilitate target identification. We propose a model in which the dysfunction of various IQGAP1 pathways can explain to a larger extent some of the GB heterogeneity and offer a platform for personalized medicine.
Collapse
Affiliation(s)
- Varun J Iyer
- Department of Medicine, Division of Hematology and Oncology, College of Medicine and Life Sciences, Health Sciences Campus, The University of Toledo, 352A Health Science Building, 3000 Transverse Drive, Toledo, OH, 43614, USA
| | - John E Donahue
- Division of Neuropathology, Department of Pathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Mahasin A Osman
- Department of Medicine, Division of Hematology and Oncology, College of Medicine and Life Sciences, Health Sciences Campus, The University of Toledo, 352A Health Science Building, 3000 Transverse Drive, Toledo, OH, 43614, USA.
| |
Collapse
|
6
|
Sołtyka-Krajewska M, Ziemniak M, Zawadzka-Kazimierczuk A, Skrzypczyk P, Siwiak-Niedbalska E, Jaśkiewicz A, Zieliński R, Fokt I, Skóra S, Koźmiński W, Woźniak K, Priebe W, Pająk-Tarnacka B. Potent Biological Activity of Fluorinated Derivatives of 2-Deoxy-d-Glucose in a Glioblastoma Model. Biomedicines 2024; 12:2240. [PMID: 39457553 PMCID: PMC11504489 DOI: 10.3390/biomedicines12102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND One defining feature of various aggressive cancers, including glioblastoma multiforme (GBM), is glycolysis upregulation, making its inhibition a promising therapeutic approach. One promising compound is 2-deoxy-d-glucose (2-DG), a d-glucose analog with high clinical potential due to its ability to inhibit glycolysis. Upon uptake, 2-DG is phosphorylated by hexokinase to 2-DG-6-phosphate, which inhibits hexokinase and downstream glycolytic enzymes. Unfortunately, therapeutic use of 2-DG is limited by poor pharmacokinetics, suppressing its efficacy. METHODS To address these issues, we synthesized novel halogenated 2-DG analogs (2-FG, 2,2-diFG, 2-CG, and 2-BG) and evaluated their glycolytic inhibition in GBM cells. Our in vitro and computational studies suggest that these derivatives modulate hexokinase activity differently. RESULTS Fluorinated compounds show the most potent cytotoxic effects, indicated by the lowest IC50 values. These effects were more pronounced in hypoxic conditions. 19F NMR experiments and molecular docking confirmed that fluorinated derivatives bind hexokinase comparably to glucose. Enzymatic assays demonstrated that all halogenated derivatives are more effective HKII inhibitors than 2-DG, particularly through their 6-phosphates. By modifying the C-2 position with halogens, these compounds may overcome the poor pharmacokinetics of 2-DG. The modifications seem to enhance the stability and uptake of the compounds, making them effective at lower doses and over prolonged periods. CONCLUSIONS This research has the potential to reshape the treatment landscape for GBM and possibly other cancers by offering a more targeted, effective, and metabolically focused therapeutic approach. The application of halogenated 2-DG analogs represents a promising advancement in cancer metabolism-targeted therapies, with the potential to overcome current treatment limitations.
Collapse
Affiliation(s)
- Maja Sołtyka-Krajewska
- Department of Medical Biology, Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland; (M.S.-K.); (E.S.-N.); (A.J.)
| | - Marcin Ziemniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (M.Z.); (A.Z.-K.); (P.S.); (W.K.); (K.W.)
| | - Anna Zawadzka-Kazimierczuk
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (M.Z.); (A.Z.-K.); (P.S.); (W.K.); (K.W.)
| | - Paulina Skrzypczyk
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (M.Z.); (A.Z.-K.); (P.S.); (W.K.); (K.W.)
| | - Ewelina Siwiak-Niedbalska
- Department of Medical Biology, Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland; (M.S.-K.); (E.S.-N.); (A.J.)
| | - Anna Jaśkiewicz
- Department of Medical Biology, Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland; (M.S.-K.); (E.S.-N.); (A.J.)
| | - Rafał Zieliński
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA; (R.Z.); (I.F.); (S.S.)
| | - Izabela Fokt
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA; (R.Z.); (I.F.); (S.S.)
| | - Stanisław Skóra
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA; (R.Z.); (I.F.); (S.S.)
| | - Wiktor Koźmiński
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (M.Z.); (A.Z.-K.); (P.S.); (W.K.); (K.W.)
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (M.Z.); (A.Z.-K.); (P.S.); (W.K.); (K.W.)
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA; (R.Z.); (I.F.); (S.S.)
| | - Beata Pająk-Tarnacka
- Department of Medical Biology, Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland; (M.S.-K.); (E.S.-N.); (A.J.)
- WPD Pharmaceuticals, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
7
|
Latancia MT, Leandro GDS, Bastos AU, Moreno NC, Ariwoola ABA, Martins DJ, Ashton NW, Ribeiro VC, Hoch NC, Rocha CRR, Woodgate R, Menck CFM. Human translesion DNA polymerases ι and κ mediate tolerance to temozolomide in MGMT-deficient glioblastoma cells. DNA Repair (Amst) 2024; 141:103715. [PMID: 39029375 PMCID: PMC11330349 DOI: 10.1016/j.dnarep.2024.103715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor associated with poor patient survival. The current standard treatment involves invasive surgery, radiotherapy, and chemotherapy employing temozolomide (TMZ). Resistance to TMZ is, however, a major challenge. Previous work from our group has identified candidate genes linked to TMZ resistance, including genes encoding translesion synthesis (TLS) DNA polymerases iota (Polɩ) and kappa (Polκ). These specialized enzymes are known for bypassing lesions and tolerating DNA damage. Here, we investigated the roles of Polɩ and Polκ in TMZ resistance, employing MGMT-deficient U251-MG glioblastoma cells, with knockout of either POLI or POLK genes encoding Polɩ and Polκ, respectively, and assess their viability and genotoxic stress responses upon subsequent TMZ treatment. Cells lacking either of these polymerases exhibited a significant decrease in viability following TMZ treatment compared to parental counterparts. The restoration of the missing polymerase led to a recovery of cell viability. Furthermore, knockout cells displayed increased cell cycle arrest, mainly in late S-phase, and lower levels of genotoxic stress after TMZ treatment, as assessed by a reduction of γH2AX foci and flow cytometry data. This implies that TMZ treatment does not trigger a significant H2AX phosphorylation response in the absence of these proteins. Interestingly, combining TMZ with Mirin (double-strand break repair pathway inhibitor) further reduced the cell viability and increased DNA damage and γH2AX positive cells in TLS KO cells, but not in parental cells. These findings underscore the crucial roles of Polɩ and Polκ in conferring TMZ resistance and the potential backup role of homologous recombination in the absence of these TLS polymerases. Targeting these TLS enzymes, along with double-strand break DNA repair inhibition, could, therefore, provide a promising strategy to enhance TMZ's effectiveness in treating GBM.
Collapse
Affiliation(s)
- Marcela Teatin Latancia
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | - Giovana da Silva Leandro
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - André Uchimura Bastos
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Natália Cestari Moreno
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | - Abu-Bakr Adetayo Ariwoola
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo 04037-003, Brazil.
| | - Davi Jardim Martins
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Laboratory of Genomic Stability, Chemistry Institute at University, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Nicholas William Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | - Victória Chaves Ribeiro
- Laboratory of Genomic Stability, Chemistry Institute at University, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Nicolas Carlos Hoch
- Laboratory of Genomic Stability, Chemistry Institute at University, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Clarissa Ribeiro Reily Rocha
- Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo 04037-003, Brazil.
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| | | |
Collapse
|
8
|
Alimohammadi M, Rahimzadeh P, Khorrami R, Bonyadi M, Daneshi S, Nabavi N, Raesi R, Farani MR, Dehkhoda F, Taheriazam A, Hashemi M. A comprehensive review of the PTEN/PI3K/Akt axis in multiple myeloma: From molecular interactions to potential therapeutic targets. Pathol Res Pract 2024; 260:155401. [PMID: 38936094 DOI: 10.1016/j.prp.2024.155401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Phosphatase and tensin homolog (PTEN), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) signaling pathways contribute to the development of several cancers, including multiple myeloma (MM). PTEN is a tumor suppressor that influences the PI3K/Akt/mTOR pathway, which in turn impacts vital cellular processes like growth, survival, and treatment resistance. The current study aims to present the role of PTEN and PI3K/Akt/mTOR signaling in the development of MM and its response to treatment. In addition, the molecular interactions in MM that underpin the PI3K/Akt/mTOR pathway and address potential implications for the development of successful treatment plans are also discussed in detail. We investigate their relationship to both upstream and downstream regulators, highlighting new developments in combined therapies that target the PTEN/PI3K/Akt axis to overcome drug resistance, including the use of PI3K and mitogen-activated protein kinase (MAPK) inhibitors. We also emphasize that PTEN/PI3K/Akt pathway elements may be used in MM diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Farshid Dehkhoda
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| |
Collapse
|
9
|
Mikaelian G, Megariotis G, Theodorou DN. Interactions of a Novel Anthracycline with Oligonucleotide DNA and Cyclodextrins in an Aqueous Environment. J Phys Chem B 2024; 128:6291-6307. [PMID: 38899795 PMCID: PMC11228990 DOI: 10.1021/acs.jpcb.4c02213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Berubicin, a chemotherapy medication belonging to the class of anthracyclines, is simulated in double-stranded DNA sequences and cyclodextrins in an aqueous environment via full-atom molecular dynamics simulations on the time scale of microseconds. The drug is studied in both the neutral and protonated states so as to better comprehend the role of its charge in the formed complexes. The noncovalent berubicin-DNA and berubicin-cyclodextrin complexes are investigated in detail, paying special attention to their thermodynamic description by employing the double decoupling method, the solvent balance method, the weighted solvent accessible surface model, and the linear interaction energy method. A novel approach for extracting the desolvation thermodynamics of the binding process is also presented. Both the binding and desolvation Gibbs energies are decomposed into entropic and enthalpic contributions so as to elucidate the nature of complexation and its driving forces. Selected structural and geometrical properties of all the complexes, which are all stable, are analyzed. Both cyclodextrins under consideration are widely utilized for drug delivery purposes, and a comparative investigation between their bound states with berubicin is carried out.
Collapse
Affiliation(s)
- Georgios Mikaelian
- School
of Chemical Engineering, National Technical
University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, 15780 Athens, GR ,Greece
| | - Grigorios Megariotis
- School
of Chemical Engineering, National Technical
University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, 15780 Athens, GR ,Greece
- School
of Engineering, Department of Mineral Resources Engineering, University of Western Macedonia, 50100 Kozani, Greece
| | - Doros N. Theodorou
- School
of Chemical Engineering, National Technical
University of Athens (NTUA), 9 Heroon Polytechniou Street, Zografou Campus, 15780 Athens, GR ,Greece
| |
Collapse
|
10
|
Fan Y, Zhang R, Wang C, Pan M, Geng F, Zhong Y, Su H, Kou Y, Mo X, Lefai E, Han X, Chakravarti A, Guo D. STAT3 activation of SCAP-SREBP-1 signaling upregulates fatty acid synthesis to promote tumor growth. J Biol Chem 2024; 300:107351. [PMID: 38718868 PMCID: PMC11176798 DOI: 10.1016/j.jbc.2024.107351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
SCAP plays a central role in controlling lipid homeostasis by activating SREBP-1, a master transcription factor in controlling fatty acid (FA) synthesis. However, how SCAP expression is regulated in human cancer cells remains unknown. Here, we revealed that STAT3 binds to the promoter of SCAP to activate its expression across multiple cancer cell types. Moreover, we identified that STAT3 also concurrently interacts with the promoter of SREBF1 gene (encoding SREBP-1), amplifying its expression. This dual action by STAT3 collaboratively heightens FA synthesis. Pharmacological inhibition of STAT3 significantly reduces the levels of unsaturated FAs and phospholipids bearing unsaturated FA chains by reducing the SCAP-SREBP-1 signaling axis and its downstream effector SCD1. Examination of clinical samples from patients with glioblastoma, the most lethal brain tumor, demonstrates a substantial co-expression of STAT3, SCAP, SREBP-1, and SCD1. These findings unveil STAT3 directly regulates the expression of SCAP and SREBP-1 to promote FA synthesis, ultimately fueling tumor progression.
Collapse
Affiliation(s)
- Yunzhou Fan
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA; Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA
| | - Rui Zhang
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA
| | - Chao Wang
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Feng Geng
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA; Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA
| | - Yaogang Zhong
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA; Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA
| | - Huali Su
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA; Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA
| | - Yongjun Kou
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA; Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA
| | - Xiaokui Mo
- Biostatistic Center and Department of Bioinformatics, College of Medicine at The Ohio State University, Columbus, Ohio, USA
| | - Etienne Lefai
- Human Nutrition Unit, French National Research Institute for Agriculture, Food and Environment, University Clermont Auvergne, Clermont-Ferrand, France
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA
| | - Deliang Guo
- Department of Radiation Oncology, Ohio State Comprehensive Cancer Center, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, and College of Medicine at The Ohio State University, Columbus, Ohio, USA; Center for Cancer Metabolism, James Comprehensive Cancer Center at The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
11
|
Imperial R, Mosalem O, Majeed U, Tran NH, Borad MJ, Babiker H. Second-Line Treatment of Pancreatic Adenocarcinoma: Shedding Light on New Opportunities and Key Talking Points from Clinical Trials. Clin Exp Gastroenterol 2024; 17:121-134. [PMID: 38650920 PMCID: PMC11034511 DOI: 10.2147/ceg.s390655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Despite improvements in overall cancer mortality, deaths related to pancreatic cancer continue to rise. Following first-line treatment, second-line options are significantly limited. Classically, first-line treatment consisted of either gemcitabine or 5-fluorouracil based systemic chemotherapy. Upon progression of disease or recurrence, subsequent second-line treatment is still gemcitabine or 5-fluorouracil based chemotherapy, depending on what was used in the first line and the timing of progression or recurrence. A better understanding of the molecular underpinnings of pancreatic adenocarcinoma (PDAC) has led to new treatment strategies including specifically targeting the desmoplastic stroma, cytokine signaling and actionable mutations. Furthermore, efforts are also directed to enhance the immunogenicity profile of PDAC's well-established immunologically "cold" tumor microenvironment. More recently, the outstanding response rates of chimeric antigen receptor T (CAR-T) cells in hematologic malignancies, have led to clinical trials to evaluate the treatment modality in PDAC. In this review, we summarize recently presented clinical trials for metastatic pancreatic adenocarcinoma with novel treatment approaches in the second line and beyond.
Collapse
Affiliation(s)
- Robin Imperial
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Osama Mosalem
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Umair Majeed
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Mitesh J Borad
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Hani Babiker
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
12
|
Formanski JP, Ngo HD, Grunwald V, Pöhlking C, Jonas JS, Wohlers D, Schwalbe B, Schreiber M. Transduction Efficiency of Zika Virus E Protein Pseudotyped HIV-1 gfp and Its Oncolytic Activity Tested in Primary Glioblastoma Cell Cultures. Cancers (Basel) 2024; 16:814. [PMID: 38398205 PMCID: PMC10887055 DOI: 10.3390/cancers16040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The development of new tools against glioblastoma multiforme (GBM), the most aggressive and common cancer originating in the brain, remains of utmost importance. Lentiviral vectors (LVs) are among the tools of future concepts, and pseudotyping offers the possibility of tailoring LVs to efficiently transduce and inactivate GBM tumor cells. Zika virus (ZIKV) has a specificity for GBM cells, leaving healthy brain cells unharmed, which makes it a prime candidate for the development of LVs with a ZIKV coat. Here, primary GBM cell cultures were transduced with different LVs encased with ZIKV envelope variants. LVs were generated by using the pNLgfpAM plasmid, which produces the lentiviral, HIV-1-based, core particle with GFP (green fluorescent protein) as a reporter (HIVgfp). Using five different GBM primary cell cultures and three laboratory-adapted GBM cell lines, we showed that ZIKV/HIVgfp achieved a 4-6 times higher transduction efficiency compared to the commonly used VSV/HIVgfp. Transduced GBM cell cultures were monitored over a period of 9 days to identify GFP+ cells to study the oncolytic effect due to ZIKV/HIVgfp entry. Tests of GBM tumor specificity by transduction of GBM tumor and normal brain cells showed a high specificity for GBM cells.
Collapse
Affiliation(s)
- Jan Patrick Formanski
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Hai Dang Ngo
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Vivien Grunwald
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Celine Pöhlking
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Jana Sue Jonas
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Dominik Wohlers
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Birco Schwalbe
- Department of Neurosurgery, Asklepios Klinik Nord, Standort Heidberg, 22417 Hamburg, Germany;
| | - Michael Schreiber
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| |
Collapse
|
13
|
Zhang Q, Dai Z, Chen Y, Li Q, Guo Y, Zhu Z, Tu M, Cai L, Lu X. Endosome associated trafficking regulator 1 promotes tumor growth and invasion of glioblastoma multiforme via inhibiting TNF signaling pathway. J Neurooncol 2024; 166:113-127. [PMID: 38191954 DOI: 10.1007/s11060-023-04527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE Endosome associated trafficking regulator 1 (ENTR1) is a novel endosomal protein, which can affect multiple cellular biological behavior by remodeling plasma membrane structures. However, little is known regarding its function and underlying mechanisms in glioblastoma multiforme. METHODS Expression profile and clinical signature were obtained from The Public Database of human tumor. Immunohistochemical staining and western blotting assays were used to measure ENTR1 expression level. Human primary GBM tumor cells and human GBM cell lines A172, U87 and U251 were used to clarify the precise role of ENTR1. CCK-8 assays, wound healing and transwell invasion assays were designed to investigate cell viability, invasion and migration of GBM cells, respectively. Underlying molecular mechanisms of ENTR1 were determined via RNA-seq analysis. Tumor formation assay was used to validate the influence of ENTR1 in vivo. RESULTS Compared with normal brain tissues, ENTR1 was highly expressed in gliomas and correlated with malignant grades of gliomas and poor overall survival time. The proliferation and invasion of GBM cells could be weaken and the sensitivity to temozolomide (TMZ) chemotherapy increased after knocking down ENTR1. Overexpression of ENTR1 could reverse this effect. RNA-seq analysis showed that tumor necrosis factor (TNF) signaling pathway might be a putative regulatory target of ENTR1. Tumor formation assay validated that ENTR1 was a significant factor in tumor growth. CONCLUSION Our results indicated that ENTR1 played an important role in cell proliferation, invasion and chemotherapeutic sensitivity of GBM, suggesting that ENTR1 might be a novel prognostic marker and significant therapeutic target for GBM.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhang'an Dai
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yingyu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qun Li
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yuhang Guo
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhangzhang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Lin Cai
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Xianghe Lu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
14
|
Kang I, Kim Y, Lee HK. γδ T cells as a potential therapeutic agent for glioblastoma. Front Immunol 2023; 14:1273986. [PMID: 37928546 PMCID: PMC10623054 DOI: 10.3389/fimmu.2023.1273986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Although γδ T cells comprise a small population of T cells, they perform important roles in protecting against infection and suppressing tumors. With their distinct tissue-localizing properties, combined with their various target recognition mechanisms, γδ T cells have the potential to become an effective solution for tumors that do not respond to current therapeutic procedures. One such tumor, glioblastoma (GBM), is a malignant brain tumor with the highest World Health Organization grade and therefore the worst prognosis. The immune-suppressive tumor microenvironment (TME) and immune-evasive glioma stem cells are major factors in GBM immunotherapy failure. Currently, encouraged by the strong anti-tumoral function of γδ T cells revealed at the preclinical and clinical levels, several research groups have shown progression of γδ T cell-based GBM treatment. However, several limitations still exist that block effective GBM treatment using γδ T cells. Therefore, understanding the distinct roles of γδ T cells in anti-tumor immune responses and the suppression mechanism of the GBM TME are critical for successful γδ T cell-mediated GBM therapy. In this review, we summarize the effector functions of γδ T cells in tumor immunity and discuss current advances and limitations of γδ T cell-based GBM immunotherapy. Additionally, we suggest future directions to overcome the limitations of γδ T cell-based GBM immunotherapy to achieve successful treatment of GBM.
Collapse
Affiliation(s)
- In Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yumin Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
15
|
Pająk B, Siwiak-Niedbalska E, Jaśkiewicz A, Sołtyka M, Domoradzki T. WP1234-A Novel Anticancer Agent with Bifunctional Activity in a Glioblastoma Model. Biomedicines 2022; 10:2799. [PMID: 36359318 PMCID: PMC9687458 DOI: 10.3390/biomedicines10112799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 01/28/2025] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults with a poor prognosis. Despite significant progress in drug development, the blood-brain barrier (BBB) continues to limit the use of novel chemotherapeutics. Thus, our attention has been focused on the design, synthesis, and testing of small-molecule anticancer agents that are able to penetrate the BBB. One such compound is the D-glucose analog, 2-deoxy-D-glucose (2-DG), which inhibits glycolysis and induces GBM cell death. 2-DG has already been tested in clinical trials but was not approved as a drug, in part due to inadequate pharmacokinetics. To improve the pharmacokinetic properties of 2-DG, a series of novel derivatives was synthesized. Herein, we report the biological effects of WP1234, a 2-ethylbutyric acid 3,6-diester of 2-DG that can potentially release 2-ethylbutyrate and 2-DG inside the cells when metabolized. Using biochemical assays and examining cell viability, proliferation, protein synthesis, and apoptosis induction, we assessed the cytotoxic potential of WP1234. WP1234 significantly reduced the viability of GBM cells in a dose- and time-dependent manner. The lactate and ATP synthesis assays confirmed the inhibition of glycolysis elicited by released 2-DG. Furthermore, an evaluation of histone deacetylases (HDAC) activity revealed that the 2-ethylbutyrate action resulted in HDAC inhibition. Overall, these results demonstrated that WP1234 is a bifunctional molecule with promising anticancer potential. Further experiments in animal models and toxicology studies are needed to evaluate the efficacy and safety of this new 2-DG derivative.
Collapse
Affiliation(s)
- Beata Pająk
- Independent Laboratory of Molecular Biology and Genetics, Kaczkowski Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | | | | | | | | |
Collapse
|
16
|
Karthika C, Najda A, Klepacka J, Zehravi M, Akter R, Akhtar MF, Saleem A, Al-Shaeri M, Mondal B, Ashraf GM, Tagde P, Ramproshad S, Ahmad Z, Khan FS, Rahman MH. Involvement of Resveratrol against Brain Cancer: A Combination Strategy with a Pharmaceutical Approach. Molecules 2022; 27:4663. [PMID: 35889532 PMCID: PMC9320031 DOI: 10.3390/molecules27144663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
A brain tumor (BT) is a condition in which there is growth or uncontrolled development of the brain cells, which usually goes unrecognized or is diagnosed at the later stages. Since the mechanism behind BT is not clear, and the various physiological conditions are difficult to diagnose, the success rate of BT is not very high. This is the central issue faced during drug development and clinical trials with almost all types of neurodegenerative disorders. In the first part of this review, we focus on the concept of brain tumors, their barriers, and the types of delivery possible to target the brain cells. Although various treatment methods are available, they all have side effects or toxic effects. Hence, in the second part, a correlation was made between the use of resveratrol, a potent antioxidant, and its advantages for brain diseases. The relationship between brain disease and the blood-brain barrier, multi-drug resistance, and the use of nanomedicine for treating brain disorders is also mentioned. In short, a hypothetical concept is given with a background investigation into the use of combination therapy with resveratrol as an active ingredient, the possible drug delivery, and its formulation-based approach.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, Doświadczalna Street 51A, 20280 Lublin, Poland
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10719 Olsztyn, Poland;
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Rokeya Akter
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Riphah International University, Lahore 54950, Pakistan;
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Majed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (B.M.); (S.R.)
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201301, India;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (B.M.); (S.R.)
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| |
Collapse
|