1
|
Pallathadka H, Khaleel AQ, Hjazi A, Kumar A, Aloraibi F, Kadhum WR, Pramanik A, Hamzah HF, Mohammed SK, Mustafa YF. Decoding immune tolerance in infertility: Exploring immune pathways and non-coding RNAs as pioneering biomarkers and therapeutic targets. Hum Immunol 2025; 86:111264. [PMID: 39978249 DOI: 10.1016/j.humimm.2025.111264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Infertility, impacting a significant number of couples, is characterized by the failure to conceive after one year of consistent, unprotected sexual intercourse. It is multifactorial, with etiological contributors including ovulatory dysfunction, male reproductive anomalies, and tubal patency issues. Approximately 15% of infertility cases are classified as "unexplained," highlighting the complexity of this condition. Lifestyle determinants such as obesity and smoking further complicate reproductive outcomes, while infertility can also indicate underlying chronic health conditions. A specialized category, immune infertility, arises from a breakdown of immunological tolerance, an essential aspect for conception and the maintenance of pregnancy. The role of various immunological components, including immune cells, cytokines, chemokines, factors like HLA-G, etc., is pivotal in this context. Moreover, non-coding RNAs (ncRNAs) have emerged as critical regulators of immune tolerance within the reproductive axis. This review synthesizes the complex immunological pathways vital for successful implantation and the early stages of pregnancy alongside the regulatory roles of ncRNAs in these processes. Offering an integrated view of molecular and immunological interactions associated with infertility seeks to enhance our understanding of potential strategies to facilitate successful conception and sustain early pregnancy.
Collapse
Affiliation(s)
| | - Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, Al-Maarif University College, Al Anbar, 31001, Iraq.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India.
| | - Farah Aloraibi
- Department of Density, Al-Manara College for Medical Sciences, Maysan, Iraq.
| | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq; Advanced Research Center, Kut University College, Kut 52001, Wasit, Iraq.
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India.
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq.
| | - Saad Khudhur Mohammed
- College of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq.
| |
Collapse
|
2
|
Timofeeva AV, Fedorov IS, Tarasova AM, Sukhova YV, Kolod’ko VG, Ivanets TY, Sukhikh GT. Universal First-Trimester Screening Biomarkers for Diagnosis of Preeclampsia and Placenta Accreta Spectrum. Biomolecules 2025; 15:228. [PMID: 40001531 PMCID: PMC11852485 DOI: 10.3390/biom15020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Disruptions in epigenetic mechanisms regulating placentation, particularly imbalances in the levels of small non-coding RNAs, contribute to various pregnancy complications, including preeclampsia (PE) and placenta accreta spectrum (PAS). Given that abnormal trophoblast differentiation, invasiveness, and angiogenesis-reduced in PE and excessive in PAS-are central to the pathogenesis of these conditions, this study aimed to identify universal circulating piRNAs and their targets. METHODS Small RNA deep sequencing, quantitative reverse transcription combined with real-time polymerase chain reaction, magnetic bead-based multiplex immunoassay, ELISA, and Western blotting were employed to quantify circulating piRNAs and proteins in the blood serum of pregnant women during the 11th-14th weeks of gestation. RESULTS Statistically significant negative correlations were identified between PE- and PAS-associated piRNAs (hsa_piR_019122, hsa_piR_020497, hsa_piR_019949, and piR_019675) and several molecules, including Endoglin, IL-18, VEGF-A, VEGF-C, Angiopoietin-2, sFASL, HB-EGF, TGFα, and Clusterin. These molecules are involved in processes such as angiogenesis, inflammation, the epithelial-mesenchymal transition, cell proliferation, adhesion, and apoptosis. A first-trimester pregnancy screening algorithm was developed using logistic regression models based on Clusterin concentration and the levels of hsa_piR_020497, hsa_piR_019949, piR_019675, and hsa_piR_019122. CONCLUSIONS The proposed screening tool for early pregnancy monitoring may enable the prediction of PE or PAS in the first trimester, allowing timely interventions to reduce maternal and perinatal morbidity and mortality.
Collapse
Affiliation(s)
- Angelika V. Timofeeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician Kulakov V.I., Moscow 117997, Russia
| | | | | | | | | | | | | |
Collapse
|
3
|
Sun F, Li W, Du R, Liu M, Cheng Y, Ma J, Yan S. Impact of glycolysis enzymes and metabolites in regulating DNA damage repair in tumorigenesis and therapy. Cell Commun Signal 2025; 23:44. [PMID: 39849559 PMCID: PMC11760674 DOI: 10.1186/s12964-025-02047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025] Open
Abstract
Initially, it was believed that glycolysis and DNA damage repair (DDR) were two distinct biological processes that independently regulate tumor progression. The former metabolic reprogramming rapidly generates energy and generous intermediate metabolites, supporting the synthetic metabolism and proliferation of tumor cells. While the DDR plays a pivotal role in preserving genomic stability, thus resisting cellular senescence and cell death under both physiological and radio-chemotherapy conditions. Recently, an increasing number of studies have shown closely correlation between these two biological processes, and then promoting tumor progression. For instance, lactic acid, the product of glycolysis, maintains an acidic tumor microenvironment that not only fosters cell proliferation and invasion but also facilitates DDR by enhancing AKT activity. Here, we provide a comprehensive overview of the enzymes and metabolites involved in glycolysis, along with the primary methods for DDR. Meanwhile, this review explores existing knowledge of glycolysis enzymes and metabolites in regulating DDR. Moreover, considering the significant roles of glycolysis and DDR in tumor development and radio-chemotherapy resistance, the present review discusses effective direct or indirect therapeutic strategies targeted to glycolysis and DDR.
Collapse
Affiliation(s)
- Fengyao Sun
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Wen Li
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Ruihang Du
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Mingchan Liu
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Yi Cheng
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Jianxing Ma
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Siyuan Yan
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
4
|
Nicheperovich A, Schuster-Böckler B, Ní Leathlobhair M. Gestational trophoblastic disease: understanding the molecular mechanisms of placental tumours. Dis Model Mech 2025; 18:DMM052010. [PMID: 39873178 PMCID: PMC11810044 DOI: 10.1242/dmm.052010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Gestational trophoblastic disease (GTD) describes a group of rare benign and cancerous lesions originating from the trophoblast cells of the placenta. These neoplasms are unconventional entities, being one of the few instances in which cancer develops from the cells of another organism, the foetus. Although this condition was first described over 100 years ago, the specific genetic and non-genetic drivers of this disease remain unknown to this day. However, recent findings have provided valuable insights into the potential mechanisms underlying this rare condition. Unlike previous reviews focused primarily on the clinical and diagnostic aspects of disease development, this Review consolidates the latest research concerning the role of genetics, epigenetics and microRNAs in the initiation and progression of GTD. By examining GTD from a molecular perspective, this Review provides a unique framework for understanding the pathogenesis and progression of this rare disease.
Collapse
Affiliation(s)
- Alina Nicheperovich
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Benjamin Schuster-Böckler
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | | |
Collapse
|
5
|
Nagashima M, Takeda Y, Saitoh S, Sabrina S, Araki A, Nagase S, Asao H. A loss of tuning of both pro-coagulant and inflammatory responses in monocytes in patients with preeclampsia. J Reprod Immunol 2024; 166:104334. [PMID: 39332076 DOI: 10.1016/j.jri.2024.104334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
An imbalance between pro- and anti-angiogenesis is one of the leading causes of preeclampsia (PE). Monocytes, known as regulators of angiogenesis during immune responses, cooperate with platelets, but the specifics of these responses during pregnancy remain unclear. In this study, we investigated the relationship between pro-coagulant responses on monocytes [platelet activation marker CD61 as a monocyte-platelet aggregate (MPA), tissue factor (CD142), etc.], inflammatory responses [soluble CD40 ligand (sCD40L), soluble suppression of tumorigenesis-2 (sST2), etc.], and the balance of angiogenesis [soluble Fms-related receptor tyrosine kinase 1/placental growth factor (sFlt-1/PLGF) ratio]. In PE, markers of pro-coagulant and inflammatory responses were higher than those in normal pregnancy (NP). Interestingly, in NP, these markers harmonized with the sFlt-1/PLGF ratio, but not in PE. Furthermore, ex vivo examinations showed that upregulation of CD142 induced by additional platelet activation with adenosine diphosphate was diminished in PE. Conversely, low-dose aspirin, which is used as a preventive treatment for PE, could inhibit the increase of CD61 and sST2 under inflammatory stimuli and platelet activation in NP but not in PE. These results indicate that monocytes in PE upregulate basal activity and lose responsiveness to stimulation. The elevation of pro-coagulant and inflammatory responses may be mitigated by prophylaxis with low-dose aspirin. Therefore, the findings suggesting a loss of tuning of both pro-coagulant and inflammatory responses on monocytes help in understanding the pathology of PE. The harmonization between pro-coagulant responses, inflammatory responses, and angiogenesis may serve as useful indicators for the prediction and preventive treatment of PE.
Collapse
Affiliation(s)
- Mikako Nagashima
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata, Japan; Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yuji Takeda
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata, Japan.
| | - Shinichi Saitoh
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Saima Sabrina
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Akemi Araki
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Satoru Nagase
- Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hironobu Asao
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
6
|
Liu L, Liu Y, Tian Y, Cao Y, Wang T, Mi S, Yang R, Liu S, Ma X, Wang J. Identification of Differentially Expressed mRNAs and lncRNAs Contributes to Elucidation of Underlying Pathogenesis and Therapeutic Strategy of Recurrent Implantation Failure. Reprod Sci 2024:10.1007/s43032-024-01630-8. [PMID: 38955937 DOI: 10.1007/s43032-024-01630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Recurrent implantation failure (RIF) is a complex and poorly understood clinical disorder characterized by failure to conceive after repeated embryo transfers. Endometrial receptivity (ER) is a prerequisite for implantation, and ER disorders are associated with RIF. However, little is known regarding the molecular mechanisms underlying ER in RIF. In the present study, RNA sequencing data from the mid-secretory endometrium of patients with and without RIF were analyzed to explore the potential long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) involved in RIF. The analysis revealed 213 and 1485 differentially expressed mRNAs and lncRNAs, respectively (fold change ≥ 2 and p < 0.05). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that these genes were mostly involved in processes related to immunity or inflammation. 5 key genes (TTR, ALB, TF, AFP, and CFTR) and a key module including 14 hub genes (AFP, ALB, APOA1, APOA2, APOB, APOH, FABP1, FGA, FGG, GC, ITIH2, SERPIND1, TF and TTR) were identified in the protein-protein interaction (PPI) network. The 5 key genes were used to further explore the lncRNA-miRNA-mRNA regulatory network. Finally, the drug ML-193 based on the 14 hub genes was identifed through the CMap. After ML-193 treatment, endometrial cell proliferation was increased, the hub genes were mostly down-regulated, and the ER marker HOXA10 was up-regulated. These results offer insights into the regulatory mechanisms of lncRNAs and mRNAs and suggest ML-193 as a therapeutic agent for RIF by enhancing ER.
Collapse
Affiliation(s)
- Lin Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China.
- The Basic Medical Sciences College of Lanzhou University, Lanzhou, Gansu, China.
- The reproductive center, the First Hospital of Lanzhou University, Lanzhou, Gansu, China.
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China.
| | - Yidan Liu
- The Basic Medical Sciences College of Lanzhou University, Lanzhou, Gansu, China
| | - Yu Tian
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Ying Cao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ting Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Shengyan Mi
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Run Yang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Simin Liu
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaoling Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China.
- The Basic Medical Sciences College of Lanzhou University, Lanzhou, Gansu, China.
- The reproductive center, the First Hospital of Lanzhou University, Lanzhou, Gansu, China.
- Clinical Research Center for Reproductive Diseases of Gansu Province, Lanzhou, Gansu, China.
| | - Jing Wang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, Gansu, China.
| |
Collapse
|
7
|
Lyssy F, Forstner D, Brugger BA, Ujčič K, Guettler J, Kupper N, Wernitznig S, Daxboeck C, Neuper L, El-Heliebi A, Kloimboeck T, Kargl J, Huppertz B, Ghaffari-Tabrizi-Wizsy N, Gauster M. The chicken chorioallantoic membrane assay revisited - A face-lifted approach for new perspectives in placenta research. Placenta 2024:S0143-4004(24)00113-9. [PMID: 38705802 DOI: 10.1016/j.placenta.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
The study of very early human placentation is largely limited due to ethical restrictions on the use of embryonic tissue and the fact that the placental anatomy of common laboratory animal models varies considerably from that of humans. In recent years several promising models, including trophoblast stem cell-derived organoids, have been developed that have also proven useful for the study of important trophoblast differentiation processes. However, the consideration of maternal blood flow in trophoblast invasion models currently appears to be limited to animal models. An almost forgotten model to study the invasive behavior of trophoblasts is to culture them in vitro on the chicken chorioallantoic membrane (CAM), showing an extraembryonic vascular network in its mesenchymal stroma that is continuously perfused by the chicken embryonic blood circulation. Here, we present an extension of the previously described ex ovo CAM assay and describe the use of cavity-bearing trophoblast spheroids obtained from the first trimester cell line ACH-3P. We demonstrate how spheroids penetrated the CAM and that erosion of CAM vessels by trophoblasts led to filling of the spheroid cavities with chicken blood, mimicking initial steps of intervillous space blood perfusion. Moreover, we prove that this model is useful for state-of-the-art techniques including immunofluorescence and in situ padlock probe hybridization, making it a versatile tool to study aspects of trophoblast invasion in presence of blood flow.
Collapse
Affiliation(s)
- Freya Lyssy
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Beatrice A Brugger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Kaja Ujčič
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Nadja Kupper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Stefan Wernitznig
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Christine Daxboeck
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Lena Neuper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Amin El-Heliebi
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Teresa Kloimboeck
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | | | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria.
| |
Collapse
|
8
|
Khorami-Sarvestani S, Vanaki N, Shojaeian S, Zarnani K, Stensballe A, Jeddi-Tehrani M, Zarnani AH. Placenta: an old organ with new functions. Front Immunol 2024; 15:1385762. [PMID: 38707901 PMCID: PMC11066266 DOI: 10.3389/fimmu.2024.1385762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, School of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Kayhan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Ma J, Feng Y, Xu J, Li Z, Lai J, Guan H. Downregulation of lncRNA EPB41L4A-AS1 promotes gastric cancer cell proliferation, migration and invasion. BMC Gastroenterol 2024; 24:136. [PMID: 38627627 PMCID: PMC11020471 DOI: 10.1186/s12876-024-03216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND The incidence of gastric cancer ranks the first among digestive tract tumors in China. However, there are no specific symptoms in the early stage of the tumor and the diagnosis process is complex, so more effective detection methods are very needed. In this study, a novel long noncoding RNA (lncRNA) was introduced as a diagnostic biomarker for gastric cancer, which brought new thinking to the exploration of its pathological mechanism and clinical prediction. METHODS The level of lncRNA EPB41L4A-AS1 (EPB41L4A-AS1) in gastric cancer serum and cells was verified via real-time quantitative polymerase chain reaction (RT-qPCR). Receiver operating characteristic (ROC) curve was performed based on the EPB41L4A-AS1 level, and the diagnostic possibility of EPB41L4A-AS was analyzed. The chi-square test evaluated the correlation between EPB41L4A-AS expression and clinical information. The cells were cultured and transfected in vitro, and the mediations of abnormal EPB41L4A-AS level on the viability and motility of gastric cancer cells were verified through cell counting kit-8 (CCK-8) and Transwell assay. Furthermore, luciferase activity assay was performed to confirm the sponge molecule microRNA-17-5p (miR-17-5p) of EPB41L4A-AS1. RESULTS EPB41L4A-AS1 was decreased in gastric cancer, and low EPB41L4A-AS1 level indicated resultful diagnostic value. Overexpression of EPB41L4A-AS1 inhibited the activity of gastric cancer cells, while knockdown of EPB41L4A-AS1 promoted tumor deterioration. EPB41L4A-AS1 directly targeted and regulated the expression ofmiR-17-5p. CONCLUSION This study elaborated that EPB41L4A-AS1 is lowly expressed in gastric cancer. Silencing EPB41L4A-AS1 was beneficial to cell proliferation, migration, and invasion. EPB41L4A-AS1 provides a new possibility for the diagnosis of gastric cancer patients by targeting miR-17-5p.
Collapse
Affiliation(s)
- Jiancang Ma
- Department of Vascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, 710004, Xi'an, China
| | - Yingying Feng
- Department of Pathophysiology, Obesity and Diabetes Research Center, Navy Medical University, 200433, Shanghai, China
| | - Jinkai Xu
- Department of Vascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, 710004, Xi'an, China
| | - Zongyu Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, 710004, Xi'an, China
| | - Jingyue Lai
- Department of Vascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, 710004, Xi'an, China
| | - Hao Guan
- Department of Vascular Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, 710004, Xi'an, China.
| |
Collapse
|
10
|
Boulanger H, Bounan S, Mahdhi A, Drouin D, Ahriz-Saksi S, Guimiot F, Rouas-Freiss N. Immunologic aspects of preeclampsia. AJOG GLOBAL REPORTS 2024; 4:100321. [PMID: 38586611 PMCID: PMC10994979 DOI: 10.1016/j.xagr.2024.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
Preeclampsia is a syndrome with multiple etiologies. The diagnosis can be made without proteinuria in the presence of dysfunction of at least 1 organ associated with hypertension. The common pathophysiological pathway includes endothelial cell activation, intravascular inflammation, and syncytiotrophoblast stress. There is evidence to support, among others, immunologic causes of preeclampsia. Unlike defense immunology, reproductive immunology is not based on immunologic recognition systems of self/non-self and missing-self but on immunotolerance and maternal-fetal cellular interactions. The main mechanisms of immune escape from fetal to maternal immunity at the maternal-fetal interface are a reduction in the expression of major histocompatibility complex molecules by trophoblast cells, the presence of complement regulators, increased production of indoleamine 2,3-dioxygenase, activation of regulatory T cells, and an increase in immune checkpoints. These immune protections are more similar to the immune responses observed in tumor biology than in allograft biology. The role of immune and nonimmune decidual cells is critical for the regulation of trophoblast invasion and vascular remodeling of the uterine spiral arteries. Regulatory T cells have been found to play an important role in suppressing the effectiveness of other T cells and contributing to local immunotolerance. Decidual natural killer cells have a cytokine profile that is favored by the presence of HLA-G and HLA-E and contributes to vascular remodeling. Studies on the evolution of mammals show that HLA-E, HLA-G, and HLA-C1/C2, which are expressed by trophoblasts and their cognate receptors on decidual natural killer cells, are necessary for the development of a hemochorial placenta with vascular remodeling. The activation or inhibition of decidual natural killer cells depends on the different possible combinations between killer cell immunoglobulin-like receptors, expressed by uterine natural killer cells, and the HLA-C1/C2 antigens, expressed by trophoblasts. Polarization of decidual macrophages in phenotype 2 and decidualization of stromal cells are also essential for high-quality vascular remodeling. Knowledge of the various immunologic mechanisms required for adequate vascular remodeling and their dysfunction in case of preeclampsia opens new avenues of research to identify novel biological markers or therapeutic targets to predict or prevent the onset of preeclampsia.
Collapse
Affiliation(s)
- Henri Boulanger
- Department of Nephrology and Dialysis, Clinique de l'Estrée, Stains, France (Drs Boulanger and Ahriz-Saksi)
| | - Stéphane Bounan
- Department of Obstetrics and Gynecology, Saint-Denis Hospital Center, Saint-Denis, France (Drs Bounan and Mahdhi)
| | - Amel Mahdhi
- Department of Obstetrics and Gynecology, Saint-Denis Hospital Center, Saint-Denis, France (Drs Bounan and Mahdhi)
| | - Dominique Drouin
- Department of Obstetrics and Gynecology, Clinique de l'Estrée, Stains, France (Dr Drouin)
| | - Salima Ahriz-Saksi
- Department of Nephrology and Dialysis, Clinique de l'Estrée, Stains, France (Drs Boulanger and Ahriz-Saksi)
| | - Fabien Guimiot
- Fetoplacental Unit, Robert-Debré Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France (Dr Guimiot)
| | - Nathalie Rouas-Freiss
- Fundamental Research Division, CEA, Institut de biologie François Jacob, Hemato-Immunology Research Unit, Inserm UMR-S 976, Institut de Recherche Saint-Louis, Paris University, Saint-Louis Hospital, Paris, France (Dr Rouas-Freiss)
| |
Collapse
|
11
|
Lan X, Guo L, Hu C, Zhang Q, Deng J, Wang Y, Chen ZJ, Yan J, Li Y. Fibronectin mediates activin A-promoted human trophoblast migration and acquisition of endothelial-like phenotype. Cell Commun Signal 2024; 22:61. [PMID: 38263146 PMCID: PMC10807102 DOI: 10.1186/s12964-023-01463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND During human early placentation, a proportion of extravillous trophoblasts (EVTs) migrate to the maternal decidua, differentiating into endovascular EVTs to remodel spiral arteries and ensure the establishment of blood circulation at the maternal-fetal interface. Inadequate EVT migration and endovascular differentiation are closely associated with adverse pregnancy outcomes such as miscarriage. Activin A and fibronectin are both secretory molecules abundantly expressed at the maternal-fetal interface. Activin A has been reported to regulate EVT biological functions. However, whether fibronectin mediates activin A-promoted EVT migration and acquisition of endothelial-like phenotype as well as the underlying molecular mechanisms remain unknown. Additionally, the role of fibronectin in pregnancy establishment and maintenance warrants further investigation. METHODS Primary and immortalized (HTR8/SVneo) human EVTs were used as in vitro study models. Cultured human first-trimester chorionic villous explants were utilized for ex vivo validation. A local fibronectin knockdown model in ICR mouse uteri, achieved by nonviral in vivo transfection with small interfering RNA (siRNA) targeting fibronectin 1 (si-Fn1), was employed to explore the roles of fibronectin in the establishment and maintenance of early pregnancy. RESULTS Our results showed that activin A treatment significantly induced fibronectin 1 (FN1) mRNA expression and fibronectin protein production, which is essential for human trophoblast migration and endothelial-like tube formation. Both basal and activin A-upregulated fibronectin expression were abolished by the TGF-β type I receptor inhibitor SB431542 or siRNA-mediated knockdown of activin receptor-like kinase (ALK4) or SMAD4. Moreover, activin A-increased trophoblast migration and endothelial-like tube formation were attenuated following the depletion of fibronectin. Fibronectin knockdown via intrauterine siRNA administration reduced CD31 and cytokeratin 8 (CK8) expression at the maternal-fetal interface, resulting in a decrease in the number of implantation sites and embryos. CONCLUSIONS Our study demonstrates that activin A promotes trophoblast cell migration and acquisition of endothelial-like phenotype via ALK4-SMAD2/3-SMAD4-mediated fibronectin upregulation. Furthermore, through a local fibronectin knockdown model in mouse uteri, we found that the absence of fibronectin at the maternal-fetal interface impedes endovascular migration of trophoblasts and decidual vascularization, thereby interfering with early embryo implantation and the maintenance of pregnancy. These findings provide novel insights into placental development during early pregnancy establishment and contribute to the advancement of therapeutic approaches for managing pregnancy complications related to trophoblast dysfunction.
Collapse
Affiliation(s)
- Xiangxin Lan
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Ling Guo
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Cuiping Hu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Qian Zhang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Jianye Deng
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Yufeng Wang
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
| | - Zi-Jiang Chen
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, 250012, Shandong, China
| | - Junhao Yan
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China.
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China.
| | - Yan Li
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China.
- Medical Integration and Practice Center, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
12
|
Yin T, Li X, Li Y, Zang X, Liu L, Du M. Macrophage plasticity and function in cancer and pregnancy. Front Immunol 2024; 14:1333549. [PMID: 38274812 PMCID: PMC10808357 DOI: 10.3389/fimmu.2023.1333549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
As the soil of life, the composition and shaping process of the immune microenvironment of the uterus is worth exploring. Macrophages, indispensable constituents of the innate immune system, are essential mediators of inflammation and tissue remodeling as well. Recent insights into the heterogeneity of macrophage subpopulations have renewed interest in their functional diversity in both physiological and pathological settings. Macrophages display remarkable plasticity and switch from one phenotype to another. Intrinsic plasticity enables tissue macrophages to perform a variety of functions in response to changing tissue contexts, such as cancer and pregnancy. The remarkable diversity and plasticity make macrophages particularly intriguing cells given their dichotomous role in either attacking or protecting tumors and semi-allogeneic fetuses, which of both are characterized functionally by immunomodulation and neovascularization. Here, we reviewed and compared novel perspectives on macrophage biology of these two settings, including origin, phenotype, differentiation, and essential roles in corresponding microenvironments, as informed by recent studies on the heterogeneity of macrophage identity and function, as well as their mechanisms that might offer opportunities for new therapeutic strategies on malignancy and pregnancy complications.
Collapse
Affiliation(s)
- Tingxuan Yin
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xinyi Li
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yanhong Li
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lu Liu
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meirong Du
- Lab of Reproduction Immunology, Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
13
|
Timofeeva AV, Fedorov IS, Suhova YV, Tarasova AM, Ezhova LS, Zabelina TM, Vasilchenko ON, Ivanets TY, Sukhikh GT. Diagnostic Role of Cell-Free miRNAs in Identifying Placenta Accreta Spectrum during First-Trimester Screening. Int J Mol Sci 2024; 25:871. [PMID: 38255950 PMCID: PMC10815502 DOI: 10.3390/ijms25020871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Placenta accreta spectrum (PAS) is a severe complication of pregnancy associated with excessive invasion of cytotrophoblast cells at the sites of the endometrial-myometrial interface and the myometrium itself in cases of adherent (creta) and invasive (increta and percreta) forms, respectively. This leads to a high risk of massive blood loss, maternal hysterectomy, and preterm birth. Despite advancements in ultrasound protocols and found associations of alpha-fetoprotein, PAPP-A, hCG, PLGF, sFlt-1, IL-8, and IL-33 peripheral blood levels with PAS, there is a high need for an additional non-invasive test to improve the diagnostic accuracy and to select the real PAS from the suspected ones in the first-trimester screening. miRNA signatures of placental tissue, myometrium, and blood plasma from women with PAS in the third trimester of pregnancy, as well as miRNA profiles in exosomes from the blood serum of women in the first trimester with physiologically progressing pregnancy, complicated by PAS or pre-eclampsia, were obtained using deep sequencing. Two logistic regression models were constructed, both featuring statistically significant parameters related to the levels of miR-26a-5p, miR-17-5p, and miR-101-3p, quantified by real-time PCR in native blood serum. These models demonstrated 100% sensitivity in detecting PAS during the first pregnancy screening. These miRNAs were identified as specific markers for PAS, showing significant differences in their blood serum levels during the first trimester in the PAS group compared to those in physiological pregnancies, early- or late-onset pre-eclampsia groups. Furthermore, these miRNAs exhibited differential expression in the PAS placenta and/or myometrium in the third trimester and, according to data from the literature, control angiogenesis. Significant correlations were found between extracellular hsa-miR-101-3p and nuchal translucency thickness, hsa-miR-17-5p and uterine artery pulsatility index, and hsa-miR-26a-5p and hsa-miR-17-5p with PLGF. The developed test system for early non-invasive PAS diagnosis based on the blood serum level of extracellular miR-26a-5p, miR-17-5p, and miR-101-3p can serve as an auxiliary method for first-trimester screening of pregnant women, subject to validation with independent test samples.
Collapse
Affiliation(s)
- Angelika V. Timofeeva
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Ac. Oparina 4, 117997 Moscow, Russia; (I.S.F.); (Y.V.S.); (A.M.T.); (L.S.E.); (T.M.Z.); (O.N.V.); (T.Y.I.); (G.T.S.)
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Qin L, Wang J, Cheng F, Cheng J, Zhang H, Zheng H, Liu Y, Liang Z, Wang B, Li C, Wang H, Ju Y, Tian H, Meng S. GPC3 and PEG10 peptides associated with placental gp96 elicit specific T cell immunity against hepatocellular carcinoma. Cancer Immunol Immunother 2023; 72:4337-4354. [PMID: 37932427 PMCID: PMC10700408 DOI: 10.1007/s00262-023-03569-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
The placenta and tumors can exhibit a shared expression profile of proto-oncogenes. The basis of placenta-derived heat shock protein gp96, which induces prophylactic and therapeutic T cell responses against cancer including hepatocellular carcinoma (HCC), remains unknown. Here, we identified the associated long peptides from human placental gp96 using matrix-assisted laser desorption/ionization-time-of-flight and mass spectrometry and analyzed the achieved proteins through disease enrichment analysis. We found that placental gp96 binds to numerous peptides derived from 73 proteins that could be enriched in multiple cancer types. Epitope-harboring peptides from glypican 3 (GPC3) and paternally expressed gene 10 (PEG10) were the major antigens mediating anti-HCC T cell immunity. Molecular docking analysis showed that the GPC3- and PEG10-derived peptides, mainly obtained from the cytotrophoblast layer of the mature placenta, bind to the lumenal channel and client-bound domain of the gp96 dimer. Immunization with bone marrow-derived dendritic cells pulsed with recombinant gp96-GPC3 or recombinant gp96-PEG10 peptide complex induced specific T cell responses, and T cell transfusion led to pronounced growth inhibition of HCC tumors in nude mice. We demonstrated that the chaperone gp96 can capture antigenic peptides as an efficient approach for defining tumor rejection oncoantigens in the placenta and provide a basis for developing GPC3 and PEG10 peptide-based vaccines against HCC. This study provides insight into the underlying mechanism of the antitumor response mediated by embryonic antigens from fetal tissues, and this will incite more studies to identify potential tumor rejection antigens from placenta.
Collapse
Affiliation(s)
- Lijuan Qin
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiuru Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fang Cheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiamin Cheng
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Han Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huaguo Zheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongai Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhentao Liang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baifeng Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changfei Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Haoyu Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Ju
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
| | | | - Songdong Meng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Su Z, Diao T, McGuire H, Yao C, Yang L, Bao G, Xu X, He B, Zheng Y. Nanomaterials Solutions for Contraception: Concerns, Advances, and Prospects. ACS NANO 2023; 17:20753-20775. [PMID: 37856253 DOI: 10.1021/acsnano.3c04366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Preventing unintentional pregnancy is one of the goals of a global public health policy to minimize effects on individuals, families, and society. Various contraceptive formulations with high effectiveness and acceptance, including intrauterine devices, hormonal patches for females, and condoms and vasectomy for males, have been developed and adopted over the last decades. However, distinct breakthroughs of contraceptive techniques have not yet been achieved, while the associated long-term adverse effects are insurmountable, such as endocrine system disorder along with hormone administration, invasive ligation, and slowly restored fertility after removal of intrauterine devices. Spurred by developments of nanomaterials and bionanotechnologies, advanced contraceptives could be fulfilled via nanomaterial solutions with much safer and more controllable and effective approaches to meet various and specific needs for women and men at different reproductive stages. Nanomedicine techniques have been extended to develop contraceptive methods, such as the targeted drug delivery and controlled release of hormone using nanocarriers for females and physical stimulation assisted vasectomy using functional nanomaterials via photothermal treatment or magnetic hyperthermia for males. Nanomaterial solutions for advanced contraceptives offer significantly improved biosafety, noninvasive administration, and controllable reversibility. This review summarizes the nanomaterial solutions to female and male contraceptives including the working mechanisms, clinical concerns, and their merits and demerits. This work also reviewed the nanomaterials that have been adopted in contraceptive applications. In addition, we further discuss safety considerations and future perspectives of nanomaterials in nanostrategy development for next-generation contraceptives. We expect that nanomaterials would potentially replace conventional materials for contraception in the near future.
Collapse
Affiliation(s)
- Zhenning Su
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Tian Diao
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Helen McGuire
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Cancan Yao
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Lijun Yang
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Guo Bao
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
| | - Xiaoxue Xu
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Science, Western Sydney University, Kumamoto NSW 2751, Australia
| | - Bin He
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Department of Reproduction Physiology, National Research Institute for Family Planning, Beijing 100081, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan
| |
Collapse
|
16
|
Zhang L, Wang S, Ma Y, Song Y, Li D, Liang X, Hao Y, Jiang M, Lv J, Du H. Shoutai Wan regulates glycolysis imbalance at the maternal-fetal interface in threatened abortion mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116502. [PMID: 37068718 DOI: 10.1016/j.jep.2023.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Threatened abortion is a common disease among women of childbearing age. Its high incidence rate and unclear etiology, seriously threaten women's physical and mental health. Shoutai Wan (STW) is a traditional Chinese medicine decoction for treating abortion. It has a long history of treating threatened abortion by tonifying the kidney and calming the fetus. However, the mechanism of STW remains unclear. AIM OF STUDY To study the mechanism and potential benefit of STW in pregnant mice with hydrocortisone and mifepristone-induced threatened abortion. MATERIALS AND METHODS The STW compounds were identified using gas chromatography-mass spectrometry analysis. STW-H, STW-M, or STW-L was separately given 3 mg/ml, 1.5 mg/ml and 0.75 mg/ml STW in the morning, and 2 mg/ml hydrocortisone in the afternoon from gestation day (D) 1-9 and once with 0.4 mg/kg mifepristone on D10. Didroxyprogesterone (0.1 mg/ml) and equal dose pure water were used to replace STW in didroxyprogesterone (DYD) group and model group respectively. The control group used pure water to replace STW, hydrocortisone, and mifepristone. We performed morphological and histological analyses of the maternal-fetal interface on day 10. RESULTS The embryo loss rate in the STW-H and DYD groups was lower than that in the model group. Hematoxylin and eosin (HE) staining suggested that the morphology of maternal-fetal interface was improved in the STW-H and DYD groups. Immunohistochemical (IHC), Quantitative Reverse Transcription Polymerase Chain Reactionstaining (qRT-PCR), and Western blot (WB) results indicated that HIF-1α expression in the maternal-fetal interface of the STW-H and DYD groups was higher than that in model group. The activities of HK, PKM, LDH and the concentration of lactic acid in the STW-H and DYD groups were higher than those in model group. Furthermore, the protein and mRNA levels of HK2, PKM2, LDHA, MCT4, and GPR81 were higher in the STW-H and DYD groups than those in the model group. CONCLUSIONS STW can reduce the pregnancy loss rate by regulating the glycolysis balance at the maternal-fetal interface of kidney deficiency threatened abortion model mice.
Collapse
Affiliation(s)
- Li Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Shuhui Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Yucong Ma
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Yajing Song
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Dandan Li
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Xiao Liang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Yanzhi Hao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Min Jiang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Jingfang Lv
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China; Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China
| | - Huilan Du
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China.
| |
Collapse
|
17
|
Rekowska AK, Obuchowska K, Bartosik M, Kimber-Trojnar Ż, Słodzińska M, Wierzchowska-Opoka M, Leszczyńska-Gorzelak B. Biomolecules Involved in Both Metastasis and Placenta Accreta Spectrum-Does the Common Pathophysiological Pathway Exist? Cancers (Basel) 2023; 15:cancers15092618. [PMID: 37174083 PMCID: PMC10177254 DOI: 10.3390/cancers15092618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The process of epithelial-to-mesenchymal transition (EMT) is crucial in the implantation of the blastocyst and subsequent placental development. The trophoblast, consisting of villous and extravillous zones, plays different roles in these processes. Pathological states, such as placenta accreta spectrum (PAS), can arise due to dysfunction of the trophoblast or defective decidualization, leading to maternal and fetal morbidity and mortality. Studies have drawn parallels between placentation and carcinogenesis, with both processes involving EMT and the establishment of a microenvironment that facilitates invasion and infiltration. This article presents a review of molecular biomarkers involved in both the microenvironment of tumors and placental cells, including placental growth factor (PlGF), vascular endothelial growth factor (VEGF), E-cadherin (CDH1), laminin γ2 (LAMC2), the zinc finger E-box-binding homeobox (ZEB) proteins, αVβ3 integrin, transforming growth factor β (TGF-β), β-catenin, cofilin-1 (CFL-1), and interleukin-35 (IL-35). Understanding the similarities and differences in these processes may provide insights into the development of therapeutic options for both PAS and metastatic cancer.
Collapse
Affiliation(s)
- Anna K Rekowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Karolina Obuchowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Magdalena Bartosik
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Żaneta Kimber-Trojnar
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Magdalena Słodzińska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-090 Lublin, Poland
| | | | | |
Collapse
|
18
|
Stope MB, Mustea A, Sänger N, Einenkel R. Immune Cell Functionality during Decidualization and Potential Clinical Application. Life (Basel) 2023; 13:life13051097. [PMID: 37240742 DOI: 10.3390/life13051097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Due to a vast influx in the secretory phase of the menstrual cycle, leukocytes represent 40-50% of the decidua at the time of implantation. Their importance for the implantation, maintenance of pregnancy, and parturition are known yet not fully understood. Thus, in idiopathic infertility, decidual immune-related factors are speculated to be the cause. In this review, the immune cell functions in the decidua were summarized, and clinical diagnostics, as well as interventions, were discussed. There is a rising number of commercially available diagnostic tools. However, the intervention options are still limited and/or poorly studied. In order for us to make big steps towards the proper use of reproductive immunology findings, we need to understand the mechanisms and especially support translational research.
Collapse
Affiliation(s)
- Matthias B Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Nicole Sänger
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Bonn, 53127 Bonn, Germany
| | - Rebekka Einenkel
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
19
|
A Comparative Review of Pregnancy and Cancer and Their Association with Endoplasmic Reticulum Aminopeptidase 1 and 2. Int J Mol Sci 2023; 24:ijms24043454. [PMID: 36834865 PMCID: PMC9965492 DOI: 10.3390/ijms24043454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The fundamental basis of pregnancy and cancer is to determine the fate of the survival or the death of humanity. However, the development of fetuses and tumors share many similarities and differences, making them two sides of the same coin. This review presents an overview of the similarities and differences between pregnancy and cancer. In addition, we will also discuss the critical roles that Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and 2 may play in the immune system, cell migration, and angiogenesis, all of which are essential for fetal and tumor development. Even though the comprehensive understanding of ERAP2 lags that of ERAP1 due to the lack of an animal model, recent studies have shown that both enzymes are associated with an increased risk of several diseases, including pregnancy disorder pre-eclampsia (PE), recurrent miscarriages, and cancer. The exact mechanisms in both pregnancy and cancer need to be elucidated. Therefore, a deeper understanding of ERAP's role in diseases can make it a potential therapeutic target for pregnancy complications and cancer and offer greater insight into its impact on the immune system.
Collapse
|
20
|
Liu H, Zheng J, Liao A. The regulation and potential roles of m6A modifications in early embryonic development and immune tolerance at the maternal-fetal interface. Front Immunol 2022; 13:988130. [PMID: 36225914 PMCID: PMC9549360 DOI: 10.3389/fimmu.2022.988130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 12/16/2022] Open
Abstract
The immune microenvironment at the maternal-fetal interface was determined by the crosstalk between the trophoblast and maternal-derived cells, which dynamically changed during the whole gestation. Trophoblasts act as innate immune cells and dialogue with maternal-derived cells to ensure early embryonic development, depending on the local immune microenvironment. Therefore, dysfunctions in trophoblasts and maternal decidual cells contribute to pregnancy complications, especially recurrent pregnancy loss in early pregnancy. Since many unknown regulatory factors still affect the complex immune status, exploring new potential aspects that could influence early pregnancy is essential. RNA methylation plays an important role in contributing to the transcriptional regulation of various cells. Sufficient studies have shown the crucial roles of N6-methyladenosine (m6A)- and m6A-associated- regulators in embryogenesis during implantation. They are also essential in regulating innate and adaptive immune cells and the immune response and shaping the local and systemic immune microenvironment. However, the function of m6A modifications at the maternal-fetal interface still lacks wide research. This review highlights the critical functions of m6A in early embryonic development, summarizes the reported research on m6A in regulating immune cells and tumor immune microenvironment, and identifies the potential value of m6A modifications in shaping trophoblasts, decidual immune cells, and the microenvironment at the maternal-fetal interface. The m6A modifications are more likely to contribute to embryogenesis, placentation and shape the immune microenvironment at the maternal-fetal interface. Uncovering these crucial regulatory mechanisms could provide novel therapeutic targets for RNA methylation in early pregnancy.
Collapse
Affiliation(s)
- Hong Liu
- Department of Reproduction, Maternal and Child Health Hospital of Hubei Province, Affiliated in Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zheng
- Department of Reproduction, Maternal and Child Health Hospital of Hubei Province, Affiliated in Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jie Zheng, ; Aihua Liao,
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jie Zheng, ; Aihua Liao,
| |
Collapse
|