1
|
Jia R, Liu Y, Wu Y, Shen S, Cao K, Chen X, Wu Y, Shen W, Wang L, Sun B, Zhang Y, Xia H. Liposomes-in-Gel as the Docetaxel Delivery for the Effective Treatment of Psoriasis by Inhibiting the Proliferation of Blood Vessels. Gels 2025; 11:228. [PMID: 40277665 DOI: 10.3390/gels11040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
Psoriasis is a chronic skin disease caused by the interaction of multiple factors that leads to the abnormal growth of stratum corneum cells and has been called an immortal cancer. Docetaxel has been trialed for the treatment of psoriasis due to its superior ability to induce apoptosis, but its insolubility and low bioavailability have hampered its development. Here, docetaxel (DTX)-loaded liposomes-in-gel (DTX-LP-G) as the transdermal delivery was investigated to the treatment of psoriasis via modulating the IL6-HIF-1α-VEGF axis. The results demonstrated that DTX-LP-G cumulatively released a much higher amount of drug into the skin than that from DTX-loaded liposomes (DTX-LPs) and DTX-loaded gel (DTX-G). DTX-LP-G was also the most efficient in scavenging hydrogen peroxide free radicals in vitro. In a mouse model of psoriasis, DTX-LP-G acted as a preliminary therapeutic agent for psoriasis in terms of apparent evaluation, splenomegaly, suppression of MDA content in skin tissue, and down-regulated the expression of IL6, HIF-1α, and VEGF to control the proliferation of vessels, except for a less pronounced effect on the stratum corneum. In addition, enrichment analysis can speculate that DTX also treated psoriasis by resisting the production of keratin-forming cells.
Collapse
Affiliation(s)
- Ruoyang Jia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yinyin Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yifang Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Si Shen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Keang Cao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xue Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yang Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wang Shen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Lu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Bin Sun
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yongli Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
2
|
Wang Q, Zhao X, Wang S, Lu S. Sarcopenia and immune-mediated inflammatory diseases: Evaluating causality and exploring therapeutic targets for sarcopenia through Mendelian randomization. Int Immunopharmacol 2025; 144:113687. [PMID: 39591827 DOI: 10.1016/j.intimp.2024.113687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/03/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND An increasing body of evidence has revealed the association between immune-mediated inflammatory diseases (IMIDs) and sarcopenia. However, a genetically direct causality between IMIDs and sarcopenia remains elusive. METHODS To investigate the relationship between IMIDs and sarcopenia-related traits and identify potential therapeutic targets, a Mendelian randomization (MR) was performed. We collected publicly available genome-wide association studies (GWAS) data for seven common IMIDs, including systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), Crohn's disease (CD), ulcerative colitis (UC), psoriasis (PSO), ankylosing spondylitis (AS), and rheumatoid arthritis (RA). Additionally, summary-level GWAS data for sarcopenia-related traits, including appendicular lean mass (ALM), left-hand grip strength, and right-hand grip strength were collected. To search for therapeutic targets, we used two types of genetic instruments to proxy the exposure of druggable genes, including genetic variants within or nearby drug targets and expression quantitative trait loci (eQTLs) of drug targets. Two-sample MR and summary-data-based MR (SMR) were used to calculate effect estimates, and sensitivity analyses were implemented for robustness. Drug tractability, gene enrichment analysis, and protein-protein interaction (PPI) analysis were used to validate the biological and clinical significance of the selected drug targets. RESULTS The two-sample MR analysis indicated the existence of casual associations between IMIDs and sarcopenia-related traits in the overall and sex-stratified populations. In particular, PSO had causal effects on decreased ALM, which showed significance in all six MR analysis tests with directional consistency in the overall population. Grounded in this robust association, HLA-DRB5, HLA-DRB1, and AGER were identified as potential therapeutic targets for ALM decline by drug target MR and further confirmed by SMR analysis. These genes were associated with therapeutic agents currently undergoing evaluations in clinical trials. Gene enrichment and PPI analysis indicated a strong association of these genes with immune functions. CONCLUSIONS This MR study contributes novel genetic evidence supporting the causal link between IMIDs and sarcopenia, with a particular emphasis on the association between PSO and decreased ALM. Additionally, AGER, HLA-DRB1, and HLA-DRB5 emerge as potential therapeutic targets for ALM decline.
Collapse
Affiliation(s)
- Qijun Wang
- Department of Orthopedics & Elderly Spinal Surgery, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xuan Zhao
- Department of Orthopedics & Elderly Spinal Surgery, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shuaikang Wang
- Department of Orthopedics & Elderly Spinal Surgery, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shibao Lu
- Department of Orthopedics & Elderly Spinal Surgery, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
3
|
Johansen MB, Nielsen SH, Port H, Todberg T, Løvendorf MB, Skov L. Biomarkers of Extracellular Matrix Fragments in Patients with Psoriasis. Int J Mol Sci 2024; 26:261. [PMID: 39796116 PMCID: PMC11720200 DOI: 10.3390/ijms26010261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Blood-based extracellular matrix (ECM) fragments have been identified as potential pharmacologic biomarkers in spondyloarthritis and diagnostic biomarkers in psoriatic arthritis and psoriasis vulgaris. This study aimed to explore whether ECM fragments can differentiate patients with psoriasis from healthy controls (HC) and determine their potential as biomarkers for response to treatment in psoriasis. The study population included 59 patients with moderate to severe psoriasis, not receiving systemic anti-psoriatic treatment at inclusion, and 52 HC matched by age, sex, and BMI. An EDTA plasma sample was taken from all subjects at inclusion. Nine patients with psoriasis who initiated treatment with adalimumab after inclusion and responded successfully had an additional EDTA plasma sample taken after three to six months. Twelve ECM fragments were measured using validated ELISAs and Immunodiagnostic Systems automated chemiluminescent assays. C4M, indicating collagen IV degradation, PRO-C3, indicating tissue fibrosis, and PRO-C4, indicating epidermal basement membrane turnover showed significantly elevated levels in psoriasis patients compared with HC (p = 0.005, p = 0.016, and p = 0.018, respectively). Despite successful treatment, adalimumab did not alter C4M, PRO-C3, or PRO-C4 levels. In conclusion, compared with controls, C4M, PRO-C3, and PRO-C4 were elevated in psoriasispatients, but treatment did not modulate these fragments.
Collapse
Affiliation(s)
- Mila Broby Johansen
- Department of Dermatology and Allergy, Copenhagen University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark; (T.T.); (M.B.L.); (L.S.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| | | | - Helena Port
- Nordic Bioscience, 2730 Herlev, Denmark; (S.H.N.); (H.P.)
| | - Tanja Todberg
- Department of Dermatology and Allergy, Copenhagen University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark; (T.T.); (M.B.L.); (L.S.)
| | - Marianne Bengtson Løvendorf
- Department of Dermatology and Allergy, Copenhagen University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark; (T.T.); (M.B.L.); (L.S.)
- The Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Lone Skov
- Department of Dermatology and Allergy, Copenhagen University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark; (T.T.); (M.B.L.); (L.S.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
4
|
Li H, Zhang H, Zhao X, Huang J, Zhang J, Liu Z, Wen J, Qin S. The role of C-reactive protein and genetic predisposition in the risk of psoriasis: results from a national prospective cohort. BMC Rheumatol 2024; 8:72. [PMID: 39707502 DOI: 10.1186/s41927-024-00450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Psoriasis is an immune-mediated chronic inflammatory disease associated with multiple factors. To evaluate the extent to which C-reactive protein (CRP) and genetic predisposition affect the incidence of psoriasis. METHODS The cohort study retrieved 420,040 participants without psoriasis at baseline from the UK Biobank. Serum CRP was categorized into two levels: < 2 mg/L (normal) and ≥ 2 mg/L (elevated). The polygenic risk score (PRS) was used to estimate genetic predisposition, and was characterized as low, moderate and high PRS. The possible interaction and joint associations between CRP and PRS were assessed using Cox proportional hazards models. RESULTS Participants with high CRP levels had an increased risk of incident psoriasis compared to those with low CRP levels (HR: 1.26, 95% CI: 1.18-1.34). Participants with high CRP levels and high PRS had the highest risk of incident psoriasis [2.24 (95% CI: 2.01, 2.49)], compared with those had low CRP levels and low PRS. Significant additive and multiplicative interaction were found between CRP and PRS in relation to the incidence of psoriasis. CONCLUSIONS Our results suggest that higher CRP concentration may be associated with higher psoriasis incidence, with a more pronounced association observed in individuals with high PRS for psoriasis. So, clinicians should be aware that the risk of incident psoriasis may increase in general population with high CRP levels and high PRS, so that early investigation and intervention can be initiated.
Collapse
Affiliation(s)
- Huarun Li
- Department of Dermatology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Haobin Zhang
- Institute for Healthcare Artificial Intelligence Application, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiangyue Zhao
- Department of Dermatology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinping Huang
- Department of Dermatology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Junguo Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhaoyan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Ju Wen
- Department of Dermatology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Si Qin
- Department of Dermatology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Radziszewski M, Galus R, Łuszczyński K, Winiarski S, Wąsowski D, Malejczyk J, Włodarski P, Ścieżyńska A. The RAGE Pathway in Skin Pathology Development: A Comprehensive Review of Its Role and Therapeutic Potential. Int J Mol Sci 2024; 25:13570. [PMID: 39769332 PMCID: PMC11676465 DOI: 10.3390/ijms252413570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The receptor for advanced glycation end-products (RAGE), a member of the immunoglobulin superfamily, is expressed in various cell types and mediates cellular responses to a wide range of ligands. The activation of RAGE triggers complex signaling pathways that drive inflammatory, oxidative, and proliferative responses, which are increasingly implicated in the pathogenesis of skin diseases. Despite its well-established roles in conditions such as diabetes, cancer, and chronic inflammation, the contribution of RAGE to skin pathologies remains underexplored. This review synthesizes current findings on RAGE's involvement in the pathophysiology of skin diseases, including conditions such as psoriasis, atopic dermatitis, and lichen planus, focusing on its roles in inflammatory signaling, tissue remodeling, and skin cancer progression. Additionally, it examines RAGE-modulating treatments investigated in dermatological contexts, highlighting their potential as therapeutic options. Given RAGE's significance in a variety of skin conditions, further research into its mediated pathways may uncover new opportunities for targeted interventions in skin-specific RAGE signaling.
Collapse
Affiliation(s)
- Marcin Radziszewski
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Department of Thoracic Surgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Ryszard Galus
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Krzysztof Łuszczyński
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 04-141 Warsaw, Poland
| | - Sebastian Winiarski
- Department of Thoracic Surgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Dariusz Wąsowski
- Department of Thoracic Surgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Jacek Malejczyk
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Institute of Health Sciences, Faculty of Medical and Health Sciences, University of Siedlce, 08-110 Siedlce, Poland
| | - Paweł Włodarski
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Aneta Ścieżyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 04-141 Warsaw, Poland
| |
Collapse
|
6
|
Xu M, Deng H, Zhang X, Deng J, Yu W, Han L, Yan Y, Yao D, Yu J, Ye S, Cui J, Hu D, Jia Y, Dong Z, Xu D, Yu X, Lu C. Systematic analysis of serum peptidase inhibitor 3 in psoriasis diagnosis and treatment. Clin Rheumatol 2024; 43:3361-3372. [PMID: 39287701 DOI: 10.1007/s10067-024-07138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease. To date, there are no serum biomarkers for psoriasis that have been validated to diagnose or treat psoriasis. METHODS Peptidase inhibitor 3 (PI3) levels in serum were measured using chemiluminescence immunoassay (CLIA) in two independent cohorts including healthy controls (HC) and patients diagnosed with chronic urticaria (CU), chronic eczema (CE), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), psoriatic arthritis (PsA), or psoriasis vulgaris (PV). Receiver operating characteristic (ROC) curve analysis determined the diagnostic performance of PI3 in patients with psoriasis. The correlation between PI3 levels and the Psoriasis Area Severity Index (PASI) score was analyzed using the Spearman correlation method. Additionally, the study evaluated PI3 expression and treatment response of PV patients 12 weeks before and after topical treatment with calcipotriol betamethasone and calcipotriol ointment (T#1) or topical therapy plus PSORI-CM01 granules (T#2). RESULTS In cohort #1, PI3 levels effectively discriminate PV patients from HC and CU patients, with AUCs of 0.909 and 0.840, respectively. In cohort #2, AUCs for detecting PV patients among HC, CU, CE, SLE, and RA patients were 0.940, 0.926, 0.802, 0.989, and 0.951, respectively. For PsA patients, AUCs were 0.989, 0.986, 0.910, 1.000, and 0.984 compared to HC, CU, CE, SLE, and RA patients, respectively. In both cohorts, PI3 levels correlated significantly with PASI scores in PV patients (cohort #1, r = 0.433; cohort #2, r = 0.634) and PsA patients (cohort #2, r = 0.718). Moreover, univariate logistic regression analyses revealed that PV patients with higher PI3 expression had a significantly higher risk of treatment resistance, with an odds ratio of 3.45 [95% confidence interval (CI) 1.54, 7.74, p = 0.003]. Finally, PI3 levels decreased nearly 35-fold more in the responder than in the non-responder group before and after treatment. CONCLUSIONS Serological PI3 is a reliable biomarker for PV diagnosis and may have the potential to predict and monitor the progression of PV before and after treatment. Key Points • This study validated PI3's diagnostic performance in two independent psoriasis cohorts using CLIA. • PI3 expression is significantly correlated with the psoriasis severity and with patients who benefited from the treatments. • Serological PI3 is a reliable biomarker for psoriasis diagnosis and may have the potential to monitor the psoriasis progression with and without treatments.
Collapse
Affiliation(s)
- Meng Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hao Deng
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xiaomei Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Jingwen Deng
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Wei Yu
- Department of Medical Laboratory, Affiliated to Medical School, Taikang Xianlin Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Ling Han
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Yuhong Yan
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Danni Yao
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Jingjie Yu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Shuyan Ye
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Jingwen Cui
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Di Hu
- ProteomicsEra Medical Co., Ltd, Beijing, China
| | - Yan Jia
- ProteomicsEra Medical Co., Ltd, Beijing, China
| | | | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China.
| | - Chuanjian Lu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| |
Collapse
|
7
|
Wang L, Jiang Y, Zhao C. The effects of advanced glycation end-products on skin and potential anti-glycation strategies. Exp Dermatol 2024; 33:e15065. [PMID: 38563644 DOI: 10.1111/exd.15065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
The advanced glycation end-products (AGEs) are produced through non-enzymatic glycation between reducing sugars and free amino groups, such as proteins, lipids or nucleic acids. AGEs can enter the body through daily dietary intake and can also be generated internally via normal metabolism and external stimuli. AGEs bind to cell surface receptors for AGEs, triggering oxidative stress and inflammation responses that lead to skin ageing and various diseases. Evidence shows that AGEs contribute to skin dysfunction and ageing. This review introduces the basic information, the sources, the metabolism and absorption of AGEs. We also summarise the detrimental mechanisms of AGEs to skin ageing and other chronic diseases. For the potential strategies for counteracting AGEs to skin and other organs, we summarised the pathways that could be utilised to resist glycation. Chemical and natural-derived anti-glycation approaches are overviewed. This work offers an understanding of AGEs to skin ageing and other chronic diseases and may provide perspectives for the development of anti-glycation strategies.
Collapse
Affiliation(s)
- Lingyu Wang
- Beijing Qingyan Boshi Health Management Co., Ltd, Beijing, China
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., Ltd, Beijing, China
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., Ltd, Beijing, China
| |
Collapse
|
8
|
Salman HR, Alzubaidy AA, Abbas AH, Mohammad HA. Attenuated effects of topical vinpocetine in an imiquimod-induced mouse model of psoriasis. J Taibah Univ Med Sci 2024; 19:35-53. [PMID: 37868105 PMCID: PMC10585306 DOI: 10.1016/j.jtumed.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/11/2023] [Accepted: 09/09/2023] [Indexed: 10/24/2023] Open
Abstract
Psoriasis is an uncontrolled, long-lasting inflammatory dermatosis distinguished by thickened, erythematous, and flaky skin lesions. Massive amounts of inflammatory cytokines are produced when immune system imbalances are driven by genetic and environmental triggers. Vinpocetine (VNP), a man-made analogue of the compound vincamine found in the dwarf periwinkle herb, has robust anti-inflammatory, immunomodulatory, and anti-oxidative effects; alleviates the epidermal penetration of immune cells, such as eosinophils and neutrophils; and abolishes the generation of pro-inflammatory molecules. Objective This study was aimed at exploring the effects of long-term topical VNP, both alone and co-administered with clobetasol propionate, in an imiquimod-induced mouse model of psoriasiform dermatitis. Methods The study protocol consisted of 48 Swiss albino mice, randomly divided into six groups of eight mice each. In group I, petroleum jelly was administered daily for 8 days. In group II, imiquimod was administered topically at 62.5 mg daily for 8 days. In groups III, VI, V, and VI, 0.05% clobetasol propionate, 1% VNP, 3% VNP, and 3% VNP plus 0.05% clobetasol were administered topically for an additional 8 days after the induction, thus resulting in a total trial length of 16 days. Results Topical VNP at various doses alleviated the severity of imiquimod-induced psoriatic lesions-including erythema, silvery-white scaling, and thickening-and reversed the histopathological abnormalities. Moreover, imiquimod-exposed animals treated with VNP showed markedly diminished concentrations of inflammatory biomarkers, including tumour necrosis factor-α, interleukin (IL)-8, IL-17A, IL-23, IL-37, nuclear factor-kappa B (NF-κB), and transforming growth factor-β1. Conclusion This research provides new evidence that VNP, alone and in combination with clobetasol, may serve as a potential adjuvant for long-term management of autoimmune and autoinflammatory skin diseases, particularly psoriasis, by attenuating psoriatic lesion severity, suppressing cytokine generation, and limiting NF-κB-mediated inflammation.
Collapse
Affiliation(s)
- Hayder R. Salman
- Al-Mustaqbal University, College of Pharmacy, Department of Pharmacology, Hillah, Babylon, Iraq
- Al-Nahrain University, College of Medicine, Department of Pharmacology, Baghdad, Iraq
| | - Adeeb A. Alzubaidy
- University of Warith Al-Anbiyaa, College of Medicine, Department of Pharmacology, Karbala, Iraq
| | - Alaa H. Abbas
- Al-Nahrain University, College of Medicine, Department of Pharmacology, Baghdad, Iraq
| | - Hussein A. Mohammad
- University of Al-Qadisiyah, College of Pharmacy, Department of Pharmaceutics, Al Diwaniya, Al-Qadisiyah Province, Iraq
| |
Collapse
|
9
|
Borsky P, Holmannova D, Andrys C, Kremlacek J, Fiala Z, Parova H, Rehacek V, Svadlakova T, Byma S, Kucera O, Borska L. Evaluation of potential aging biomarkers in healthy individuals: telomerase, AGEs, GDF11/15, sirtuin 1, NAD+, NLRP3, DNA/RNA damage, and klotho. Biogerontology 2023; 24:937-955. [PMID: 37523061 PMCID: PMC10615959 DOI: 10.1007/s10522-023-10054-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Aging is a natural process of gradual decrease in physical and mental capacity. Biological age (accumulation of changes and damage) and chronological age (years lived) may differ. Biological age reflects the risk of various types of disease and death from any cause. We selected potential biomarkers of aging - telomerase, AGEs, GDF11 and 15 (growth differentiation factor 11/15), sirtuin 1, NAD+ (nicotinamide adenine dinucleotide), inflammasome NLRP3, DNA/RNA damage, and klotho to investigate changes in their levels depending on age and sex. We included 169 healthy volunteers and divided them into groups according to age (under 35; 35-50; over 50) and sex (male, female; male and female under 35; 35-50, over 50). Markers were analyzed using commercial ELISA kits. We found differences in values depending on age and gender. GDF15 increased with age (under 30 and 35-50 p < 0.002; 35-50 and over 50; p < 0.001; under 35 and over 50; p < 0.001) as well as GDF11 (35-50 and over 50; p < 0.03; under 35 and over 50; p < 0.02), AGEs (under 30 and 35-50; p < 0.005), NLRP3 (under 35 over 50; p < 0.03), sirtuin 1 (35-50 and over 50; p < 0.0001; under 35 and over 50; p < 0.004). AGEs and GDF11 differed between males and females. Correlations were identified between individual markers, markers and age, and markers and sex. Markers that reflect the progression of biological aging vary with age (GDF15, GDF11, AGEs, NLRP3, sirtuin) and sex (AGEs, GDF11). Their levels could be used in clinical practice, determining biological age, risk of age-related diseases and death of all-causes, and initiating or contraindicating a therapy in the elderly based on the patient's health status.
Collapse
Affiliation(s)
- Pavel Borsky
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Drahomira Holmannova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic.
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Jan Kremlacek
- Institute of Medical Biophysics, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Helena Parova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Vit Rehacek
- Transfusion Center, University Hospital, 50003, Hradec Kralove, Czech Republic
| | - Tereza Svadlakova
- Institute of Clinical Immunology and Allergology, University Hospital and Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Svatopluk Byma
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Otto Kucera
- Institute of Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| | - Lenka Borska
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003, Hradec Kralove, Czech Republic
| |
Collapse
|
10
|
Wang M, Ma X, Gao C, Luo Y, Fei X, Zheng Q, Ma X, Kuai L, Li B, Wang R, Song J. Rutin attenuates inflammation by downregulating AGE-RAGE signaling pathway in psoriasis: Network pharmacology analysis and experimental evidence. Int Immunopharmacol 2023; 125:111033. [PMID: 38149569 DOI: 10.1016/j.intimp.2023.111033] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Jueyin granules (JYG) is effective against psoriasis, but its utility components are not clear. Rutin is the main monomer of JYG, its therapeutic effect and mechanism on psoriasis need to be further clarified. PURPOSE To explore the potential mechanisms of rutin on psoriasis through network pharmacology and experiments. METHODS In vitro, cell viability was determined using the CCK8 assay, and inflammatory factors were identified using RT-qPCR. The hub genes and kernel pathways of action were identified by modular pharmacology analysis. In vivo, a BALB/c mice model of psoriasis was induced by Imiquimod (IMQ). The therapeutic effect and action pathway were detected through Western Blotting, RT-qPCR, histopathologic and immunohistochemical analysis. RESULTS Rutin inhibited cell proliferation and expression of TNF-α and IL-6 in HaCaT cells. The hub genes include APP, INS, and TNF, while the kernel pathways contain the AGE-RAGE signaling pathway. In IMQ-induced psoriasis-like mice, rutin ameliorated skin lesions and inhibited cell proliferation. Rutin could attenuate inflammation by downregulating the AGE-RAGE signaling pathway. CONCLUSION This study suggests that rutin can reduce IMQ-induced psoriasis like skin inflammation in mice, and regulation of AGE-RAGE signaling pathway may be one of its potential anti-inflammatory mechanisms. Rutin has a promising therapeutic use for the treatment of psoriasis.
Collapse
Affiliation(s)
- Mingxia Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xiaoxuan Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Chunjie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xiaoya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Qi Zheng
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xin Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ruiping Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| | - Jiankun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China.
| |
Collapse
|
11
|
Huang Y, Mao CR, Lou Y, Zhan S, Chen Z, Ding W, Ma Z. Design, Synthesis, and Biological Evaluation of an Orally Bioavailable, Potent, and Selective ROCK2 Inhibitor for Psoriasis Treatment. J Med Chem 2023; 66:15205-15229. [PMID: 37943013 DOI: 10.1021/acs.jmedchem.3c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Psoriasis, a prevalent chronic skin disorder, remains a significant therapeutic obstacle. This study centers on rho-associated coiled-coil-containing kinase2 (ROCK2) as an advantageous target for treating psoriasis and identifies five potent and selective ROCK2 inhibitors (A31-35). Notably, A32-35 outperform KD025 in ROCK2/ROCK1 selectivity by up to 216-fold. Among these candidates, A31 emerged as an exceedingly promising molecule, showcasing remarkable inhibitory potency (IC50 = 3.7 ± 0.8 nM), 19-fold ROCK2/ROCK1 selectivity, and favorable pharmacokinetics. Insights from the binding mode study further underscored the pivotal role of interactions with Phe103 on the P-loop in determining the selectivity between ROCK1 and ROCK2. In an imiquimod-induced psoriasis-like mouse model, oral administration of A31 notably ameliorated symptoms by targeting the IL-23/Th17 axis. Based on these compelling findings, A31 was selected as a highly promising compound for further investigation as a potential treatment for psoriasis.
Collapse
Affiliation(s)
- Yun Huang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Chu-Ru Mao
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yijie Lou
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuai Zhan
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Zhe Chen
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wanjing Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zhongjun Ma
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| |
Collapse
|
12
|
Holmannova D, Borsky P, Parova H, Stverakova T, Vosmik M, Hruska L, Fiala Z, Borska L. Non-Genomic Hallmarks of Aging-The Review. Int J Mol Sci 2023; 24:15468. [PMID: 37895144 PMCID: PMC10607657 DOI: 10.3390/ijms242015468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Aging is a natural, gradual, and inevitable process associated with a series of changes at the molecular, cellular, and tissue levels that can lead to an increased risk of many diseases, including cancer. The most significant changes at the genomic level (DNA damage, telomere shortening, epigenetic changes) and non-genomic changes are referred to as hallmarks of aging. The hallmarks of aging and cancer are intertwined. Many studies have focused on genomic hallmarks, but non-genomic hallmarks are also important and may additionally cause genomic damage and increase the expression of genomic hallmarks. Understanding the non-genomic hallmarks of aging and cancer, and how they are intertwined, may lead to the development of approaches that could influence these hallmarks and thus function not only to slow aging but also to prevent cancer. In this review, we focus on non-genomic changes. We discuss cell senescence, disruption of proteostasis, deregualation of nutrient sensing, dysregulation of immune system function, intercellular communication, mitochondrial dysfunction, stem cell exhaustion and dysbiosis.
Collapse
Affiliation(s)
- Drahomira Holmannova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Pavel Borsky
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Helena Parova
- Department of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.P.); (T.S.)
| | - Tereza Stverakova
- Department of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.P.); (T.S.)
| | - Milan Vosmik
- Department of Oncology and Radiotherapy, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (M.V.); (L.H.)
| | - Libor Hruska
- Department of Oncology and Radiotherapy, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (M.V.); (L.H.)
| | - Zdenek Fiala
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Lenka Borska
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| |
Collapse
|
13
|
Luengas‐Martinez A, Ismail D, Paus R, Young HS. Inhibition of vascular endothelial growth factor-A downregulates angiogenesis in psoriasis: A pilot study. SKIN HEALTH AND DISEASE 2023; 3:e245. [PMID: 37799359 PMCID: PMC10549813 DOI: 10.1002/ski2.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 10/07/2023]
Abstract
Background Vascular Endothelial Growth Factor (VEGF)-A-mediated angiogenesis participates in the pathogenesis of psoriasis, thus inviting the hypothesis that anti-VEGF-A therapy could be beneficial in psoriasis. While anti-angiogenic agents are used in oncology and ophthalmology, these therapeutic strategies remain unexplored for the management of psoriasis. Objective Our objective was to investigate ex vivo how VEGF-A blockade impacts blood vessels, epidermis and immune cells in organ-cultured plaque and non-lesional skin from patients with psoriasis. Methods Skin biopsies from patients with psoriasis (n = 6; plaque and non-lesional skin) and healthy controls (n = 6) were incubated with anti-VEGF-A monoclonal antibody (bevacizumab, Avastin®) or a human IgG1 isotype control for 72-h in serum-free organ culture. CD31/LYVE-1, Ki-67, and mast cell tryptase expression were assessed by quantitative immunohistomorphometry. VEGF-A levels in plasma, PBMCs and skin culture supernatants were measured. Results Inhibition of VEGF-A blocked all free VEGF-A ex vivo, reduced blood vessel area and the number of blood vessel endothelial cells in plaques of psoriasis (*p < 0.05). The treatment effect correlated significantly with levels of VEGF-A in organ culture supernatants (r = 0.94; *p < 0.05) from plaque skin and with plasma levels of VEGF-A from patients with psoriasis (r = 0.943; *p = 0.017). Conclusions These ex vivo data are the first studies to objectively investigate the potential of VEGF-A inhibition as a novel adjuvant treatment strategy for psoriasis. Taken together, our data encourage further investigation by clinical trial to explore whether downregulating pathological angiogenesis has clinical utility, especially in patients with severe psoriasis or those with elevated levels of VEGF-A in plasma and/or skin.
Collapse
Affiliation(s)
- Andrea Luengas‐Martinez
- Centre for Dermatology Research and Manchester Academic Health Science CentreThe University of ManchesterManchesterUK
| | - Dina Ismail
- Centre for Dermatology Research and Manchester Academic Health Science CentreThe University of ManchesterManchesterUK
| | - Ralf Paus
- Centre for Dermatology Research and Manchester Academic Health Science CentreThe University of ManchesterManchesterUK
- Dr. Philip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Monasterium LaboratoryMuensterGermany
- CUTANEONHamburgGermany
| | - Helen S. Young
- Centre for Dermatology Research and Manchester Academic Health Science CentreThe University of ManchesterManchesterUK
| |
Collapse
|
14
|
Chromosomal Aberrations and Oxidative Stress in Psoriatic Patients with and without Metabolic Syndrome. Metabolites 2022; 12:metabo12080688. [PMID: 35893255 PMCID: PMC9331653 DOI: 10.3390/metabo12080688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Psoriasis and metabolic syndrome (MetS), a common comorbidity of psoriasis, are associated with mild chronic systemic inflammation that increases oxidative stress and causes cell and tissue damage. At the cellular level, chromosomal and DNA damage has been documented, thus confirming their genotoxic effect. The main objective of our study was to show the genotoxic potential of chronic inflammation and determine whether the presence of both pathologies increases chromosomal damage compared to psoriasis alone and to evaluate whether there are correlations between selected parameters and chromosomal aberrations in patients with psoriasis and MetS psoriasis. Clinical examination (PASI score and MetS diagnostics according to National Cholesterol Education Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults; NCE/ATPIII criteria), biochemical analysis of blood samples (fasting glucose, total cholesterol, low density and high density lipoproteins; LDL, HDL, non-HDL, and triglycerides;TAG), DNA/RNA oxidative damage, and chromosomal aberration test were performed in 41 participants (20 patients with psoriasis without MetS and 21 with MetS and psoriasis). Our results showed that patients with psoriasis without metabolic syndrome (nonMetS) and psoriasis and MetS had a higher rate of chromosomal aberrations than the healthy population for which the limit of spontaneous, natural aberration was <2%. No significant differences in the aberration rate were found between the groups. However, a higher aberration rate (higher than 10%) and four numerical aberrations were documented only in the MetS group. We found no correlations between the number of chromosomal aberrations and the parameters tested except for the correlation between aberrations and HDL levels in nonMetS patients (rho 0.44; p < 0.02). Interestingly, in the MetS group, a higher number of chromosomal aberrations was documented in non-smokers compared to smokers. Data from our current study revealed an increased number of chromosomal aberrations in patients with psoriasis and MetS compared to the healthy population, especially in psoriasis with MetS, which could increase the genotoxic effect of inflammation and the risk of genomic instability, thus increasing the risk of carcinogenesis.
Collapse
|