1
|
Klein P, Koepp M, Rotenberg A, Hameed MQ, Löscher W. Clinical trials of prevention of acquired epilepsy: New proof-of-concept approach to restart trials. Epilepsia 2025. [PMID: 40184261 DOI: 10.1111/epi.18394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/06/2025]
Abstract
Approximately 20% of epilepsy is caused by acute central nervous system insults such as traumatic brain injury (TBI), stroke, and infection. There is a latent period of weeks to years between the insult and epilepsy onset, which offers an opportunity to prevent epilepsy. No preventive treatments exist. Their development is a major unmet need in neurology. For logistical reasons, epilepsy acquired after TBI, posttraumatic epilepsy (PTE), is most suitable for epilepsy prevention studies. In the past 20 years, preclinical PTE research has flourished, offering potential treatments to prevent PTE, but clinical development has been dormant. The major barrier in the development of PTE preventive treatment is the lack of a viable proof of concept (POC) trial design. PTE trials use the first late unprovoked posttraumatic seizure as an outcome measure, which necessitates a long (~2-year) follow-up and makes POC studies nonfeasible. A reliable biomarker of early PTE detection would allow shorter follow-up duration and facilitate POC studies, but such a biomarker is not yet available. Biomarker, POC, and randomized clinical trial studies have virtually identical designs in terms of patient inclusion and follow-up. Done sequentially, the studies would take a generation to complete. We propose a novel trial design for studies of PTE prevention that combines discovery of biomarker(s) of early PTE detection with POC study and uses an adaptive study POC-phase 3 continuation design approach to incorporate POC study into phase 3 study following an interim futility analysis after 6 months of treatment of the first 25% of the cohort, the POC population. This approach would establish a POC model for treatment of PTE prevention, shorten development of PTE prevention treatment, and reopen the door to clinical trials to prevent epilepsy.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, Maryland, USA
| | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mustafa Q Hameed
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the Ear, Nose and Throat Clinics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Fox R, Santana-Gomez C, Shamas M, Pavade A, Staba R, Harris NG. Different Trajectories of Functional Connectivity Captured with Gamma-Event Coupling and Broadband Measures of EEG in the Rat Fluid Percussion Injury Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597056. [PMID: 38895342 PMCID: PMC11185526 DOI: 10.1101/2024.06.02.597056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Functional connectivity (FC) after TBI is affected by an altered excitatory-inhibitory balance due to neuronal dysfunction, and the mechanistic changes observed could be reflected differently by contrasting methods. Local gamma event coupling FC (GEC-FC) is believed to represent multiunit fluctuations due to inhibitory dysfunction, and we hypothesized that FC derived from widespread, broadband amplitude signal (BBA-FC) would be different, reflecting broader mechanisms of functional disconnection. We tested this during sleep and active periods defined by high delta and theta EEG activity, respectively, at 1,7 and 28d after rat fluid-percussion-injury (FPI) or sham injury (n=6/group) using 10 indwelling, bilateral cortical and hippocampal electrodes. We also measured seizure and high-frequency oscillatory activity (HFOs) as markers of electrophysiological burden. BBA-FC analysis showed early hyperconnectivity constrained to ipsilateral sensory-cortex-to-CA1-hippocampus that transformed to mainly ipsilateral FC deficits by 28d compared to shams. These changes were conserved over active epochs, except at 28d when there were no differences to shams. In comparison, GEC-FC analysis showed large regions of hyperconnectivity early after injury within similar ipsilateral and intrahemispheric networks. GEC-FC weakened with time, but hyperconnectivity persisted at 28d compared to sham. Edge- and global connectivity measures revealed injury-related differences across time in GEC-FC as compared to BBA-FC, demonstrating greater sensitivity to FC changes post-injury. There was no significant association between sleep fragmentation, HFOs, or seizures with FC changes. The within-animal, spatial-temporal differences in BBA-FC and GEC-FC after injury may represent different mechanisms driving FC changes as a result of primary disconnection and interneuron loss. Significance statement The present study adds to the understanding of functional connectivity changes in preclinical models of traumatic brain injury. In previously reported literature, there is heterogeneity in the directionality of connectivity changes after injury, resulting from factors such as severity of injury, frequency band studied, and methodology used to calculate FC. This study aims to further clarify differential mechanisms that result in altered network topography after injury, by using Broadband Amplitude-Derived FC and Gamma Event Coupling-Derived FC in EEG. We found post-injury changes that differ in complexity and directionality between measures at and across timepoints. In conjunction with known results and future studies identifying different neural drivers underlying these changes, measures derived from this study could provide useful means from which to minimally-invasively study temporally-evolving pathology after TBI.
Collapse
|
3
|
Green TRF, Carey SD, Mannino G, Craig JA, Rowe RK, Zielinski MR. Sleep, inflammation, and hemodynamics in rodent models of traumatic brain injury. Front Neurosci 2024; 18:1361014. [PMID: 38426017 PMCID: PMC10903352 DOI: 10.3389/fnins.2024.1361014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Traumatic brain injury (TBI) can induce dysregulation of sleep. Sleep disturbances include hypersomnia and hyposomnia, sleep fragmentation, difficulty falling asleep, and altered electroencephalograms. TBI results in inflammation and altered hemodynamics, such as changes in blood brain barrier permeability and cerebral blood flow. Both inflammation and altered hemodynamics, which are known sleep regulators, contribute to sleep impairments post-TBI. TBIs are heterogenous in cause and biomechanics, which leads to different molecular and symptomatic outcomes. Animal models of TBI have been developed to model the heterogeneity of TBIs observed in the clinic. This review discusses the intricate relationship between sleep, inflammation, and hemodynamics in pre-clinical rodent models of TBI.
Collapse
Affiliation(s)
- Tabitha R. F. Green
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Sean D. Carey
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA, United States
| | - Grant Mannino
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - John A. Craig
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States
| | - Rachel K. Rowe
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Mark R. Zielinski
- Veterans Affairs (VA) Boston Healthcare System, West Roxbury, MA, United States
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA, United States
| |
Collapse
|
4
|
Mejia-Bautista A, Michelson HB, Sanjana A, Famuyiwa O, Goodman JH, Ling DSF. 4-AP challenge reveals that early intervention with brivaracetam prevents posttraumatic epileptogenesis in rats. Epilepsy Res 2023; 196:107217. [PMID: 37619297 DOI: 10.1016/j.eplepsyres.2023.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
PURPOSE There are currently no clinical treatments to prevent posttraumatic epilepsy (PTE). Recently, our group has shown that administration of levetiracetam (LEV) or brivaracetam (BRV) shortly after cortical neurotrauma prevents the development of epileptiform activity in rats, as measured ex vivo in neocortical slices. Due to the low incidence of spontaneous seizures in rodent-based models of traumatic brain injury (TBI), chemoconvulsants have been used to test injured animals for seizure susceptibility. We used a low dose of the voltage-gated potassium channel blocker 4-aminopyridine (4-AP) to evaluate posttraumatic epileptogenesis after controlled cortical impact (CCI) injury. We then used this assessment to further investigate the efficacy of BRV as an antiepileptogenic treatment. METHODS Sprague-Dawley rats aged P24-35 were subjected to severe CCI injury. Following trauma, one group received BRV-21 mg/kg (IP) at 0-2 min after injury and the other BRV-100 mg/kg (IP) at 30 min after injury. Four to eight weeks after injury, animals were given a single, low dose of 4-AP (3.0-3.5 mg/kg, IP) and then monitored up to 90 min for stage 4/5 seizures. RESULTS The chemoconvulsant challenge revealed that within four to eight weeks, CCI injury led to a two-fold increase in percentage of rats with 4-AP induced stage 4-5 seizures relative to sham-injured controls. Administration of a single dose of BRV within 30 min after trauma significantly reduced injury-induced seizure susceptibility, bringing the proportion of CCI-rats that exhibited evoked seizures down to control levels. CONCLUSIONS This study is the first to use a low dose of 4-AP as a chemoconvulsant challenge to test epileptogenicity within the first two months after CCI injury in rats. Our findings show that a single dose of BRV administered within 30 min after TBI prevents injury-induced increases in seizure susceptibility. This supports our hypothesis that early intervention with BRV may prevent PTE.
Collapse
Affiliation(s)
- Ana Mejia-Bautista
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203, USA; Program in Neural and Behaviroal Science, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203, USA; Robert F. Furchgott Center for Behavioral and Neural Science, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203, USA.
| | - Hillary B Michelson
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203, USA; Program in Neural and Behaviroal Science, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203, USA; Robert F. Furchgott Center for Behavioral and Neural Science, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Anika Sanjana
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203, USA; Program in Neural and Behaviroal Science, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203, USA; Robert F. Furchgott Center for Behavioral and Neural Science, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Oluwafunmilayo Famuyiwa
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203, USA; Robert F. Furchgott Center for Behavioral and Neural Science, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | - Jeffrey H Goodman
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203, USA; Department of Neurology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203, USA; Program in Neural and Behaviroal Science, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203, USA; Robert F. Furchgott Center for Behavioral and Neural Science, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203, USA; Department of Developmental Neurobiology, The New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Douglas S F Ling
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203, USA; Program in Neural and Behaviroal Science, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203, USA; Robert F. Furchgott Center for Behavioral and Neural Science, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| |
Collapse
|
5
|
Hameed MQ, Hodgson N, Lee HHC, Pascual-Leone A, MacMullin PC, Jannati A, Dhamne SC, Hensch TK, Rotenberg A. N-acetylcysteine treatment mitigates loss of cortical parvalbumin-positive interneuron and perineuronal net integrity resulting from persistent oxidative stress in a rat TBI model. Cereb Cortex 2023; 33:4070-4084. [PMID: 36130098 PMCID: PMC10068300 DOI: 10.1093/cercor/bhac327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) increases cerebral reactive oxygen species production, which leads to continuing secondary neuronal injury after the initial insult. Cortical parvalbumin-positive interneurons (PVIs; neurons responsible for maintaining cortical inhibitory tone) are particularly vulnerable to oxidative stress and are thus disproportionately affected by TBI. Systemic N-acetylcysteine (NAC) treatment may restore cerebral glutathione equilibrium, thus preventing post-traumatic cortical PVI loss. We therefore tested whether weeks-long post-traumatic NAC treatment mitigates cortical oxidative stress, and whether such treatment preserves PVI counts and related markers of PVI integrity and prevents pathologic electroencephalographic (EEG) changes, 3 and 6 weeks after fluid percussion injury in rats. We find that moderate TBI results in persistent oxidative stress for at least 6 weeks after injury and leads to the loss of PVIs and the perineuronal net (PNN) that surrounds them as well as of per-cell parvalbumin expression. Prolonged post-TBI NAC treatment normalizes the cortical redox state, mitigates PVI and PNN loss, and - in surviving PVIs - increases per-cell parvalbumin expression. NAC treatment also preserves normal spectral EEG measures after TBI. We cautiously conclude that weeks-long NAC treatment after TBI may be a practical and well-tolerated treatment strategy to preserve cortical inhibitory tone post-TBI.
Collapse
Affiliation(s)
- Mustafa Q Hameed
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Nathaniel Hodgson
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Henry H C Lee
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Andres Pascual-Leone
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Paul C MacMullin
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Ali Jannati
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Sameer C Dhamne
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Takao K Hensch
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, United States
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, United States
| |
Collapse
|
6
|
Understanding Acquired Brain Injury: A Review. Biomedicines 2022; 10:biomedicines10092167. [PMID: 36140268 PMCID: PMC9496189 DOI: 10.3390/biomedicines10092167] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 01/19/2023] Open
Abstract
Any type of brain injury that transpires post-birth is referred to as Acquired Brain Injury (ABI). In general, ABI does not result from congenital disorders, degenerative diseases, or by brain trauma at birth. Although the human brain is protected from the external world by layers of tissues and bone, floating in nutrient-rich cerebrospinal fluid (CSF); it remains susceptible to harm and impairment. Brain damage resulting from ABI leads to changes in the normal neuronal tissue activity and/or structure in one or multiple areas of the brain, which can often affect normal brain functions. Impairment sustained from an ABI can last anywhere from days to a lifetime depending on the severity of the injury; however, many patients face trouble integrating themselves back into the community due to possible psychological and physiological outcomes. In this review, we discuss ABI pathologies, their types, and cellular mechanisms and summarize the therapeutic approaches for a better understanding of the subject and to create awareness among the public.
Collapse
|