1
|
Siddique F, Shehata M, Ghazal M, Contractor S, El-Baz A. Lung Cancer Subtyping: A Short Review. Cancers (Basel) 2024; 16:2643. [PMID: 39123371 PMCID: PMC11312171 DOI: 10.3390/cancers16152643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
As of 2022, lung cancer is the most commonly diagnosed cancer worldwide, with the highest mortality rate. There are three main histological types of lung cancer, and it is more important than ever to accurately identify the subtypes since the development of personalized, type-specific targeted therapies that have improved mortality rates. Traditionally, the gold standard for the confirmation of histological subtyping is tissue biopsy and histopathology. This, however, comes with its own challenges, which call for newer sampling techniques and adjunctive tools to assist in and improve upon the existing diagnostic workflow. This review aims to list and describe studies from the last decade (n = 47) that investigate three such potential omics techniques-namely (1) transcriptomics, (2) proteomics, and (3) metabolomics, as well as immunohistochemistry, a tool that has already been adopted as a diagnostic adjunct. The novelty of this review compared to similar comprehensive studies lies with its detailed description of each adjunctive technique exclusively in the context of lung cancer subtyping. Similarities between studies evaluating individual techniques and markers are drawn, and any discrepancies are addressed. The findings of this study indicate that there is promising evidence that supports the successful use of omics methods as adjuncts to the subtyping of lung cancer, thereby directing clinician practice in an economical and less invasive manner.
Collapse
Affiliation(s)
- Farzana Siddique
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (F.S.); (M.S.)
| | - Mohamed Shehata
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (F.S.); (M.S.)
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates;
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA;
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (F.S.); (M.S.)
| |
Collapse
|
2
|
Sun K, Zheng Y, Yang X, Jia W. A novel transformer-based aggregation model for predicting gene mutations in lung adenocarcinoma. Med Biol Eng Comput 2024; 62:1427-1440. [PMID: 38233683 DOI: 10.1007/s11517-023-03004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
In recent years, predicting gene mutations on whole slide imaging (WSI) has gained prominence. The primary challenge is extracting global information and achieving unbiased semantic aggregation. To address this challenge, we propose a novel Transformer-based aggregation model, employing a self-learning weight aggregation mechanism to mitigate semantic bias caused by the abundance of features in WSI. Additionally, we adopt a random patch training method, which enhances model learning richness by randomly extracting feature vectors from WSI, thus addressing the issue of limited data. To demonstrate the model's effectiveness in predicting gene mutations, we leverage the lung adenocarcinoma dataset from Shandong Provincial Hospital for prior knowledge learning. Subsequently, we assess TP53, CSMD3, LRP1B, and TTN gene mutations using lung adenocarcinoma tissue pathology images and clinical data from The Cancer Genome Atlas (TCGA). The results indicate a notable increase in the AUC (Area Under the ROC Curve) value, averaging 4%, attesting to the model's performance improvement. Our research offers an efficient model to explore the correlation between pathological image features and molecular characteristics in lung adenocarcinoma patients. This model introduces a novel approach to clinical genetic testing, expected to enhance the efficiency of identifying molecular features and genetic testing in lung adenocarcinoma patients, ultimately providing more accurate and reliable results for related studies.
Collapse
Affiliation(s)
- Kai Sun
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Xinbo Yang
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Weikuan Jia
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong, 250014, China.
| |
Collapse
|
3
|
Qin Y, Huo M, Liu X, Li SC. Biomarkers and computational models for predicting efficacy to tumor ICI immunotherapy. Front Immunol 2024; 15:1368749. [PMID: 38524135 PMCID: PMC10957591 DOI: 10.3389/fimmu.2024.1368749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Numerous studies have shown that immune checkpoint inhibitor (ICI) immunotherapy has great potential as a cancer treatment, leading to significant clinical improvements in numerous cases. However, it benefits a minority of patients, underscoring the importance of discovering reliable biomarkers that can be used to screen for potential beneficiaries and ultimately reduce the risk of overtreatment. Our comprehensive review focuses on the latest advancements in predictive biomarkers for ICI therapy, particularly emphasizing those that enhance the efficacy of programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) inhibitors and cytotoxic T-lymphocyte antigen-4 (CTLA-4) inhibitors immunotherapies. We explore biomarkers derived from various sources, including tumor cells, the tumor immune microenvironment (TIME), body fluids, gut microbes, and metabolites. Among them, tumor cells-derived biomarkers include tumor mutational burden (TMB) biomarker, tumor neoantigen burden (TNB) biomarker, microsatellite instability (MSI) biomarker, PD-L1 expression biomarker, mutated gene biomarkers in pathways, and epigenetic biomarkers. TIME-derived biomarkers include immune landscape of TIME biomarkers, inhibitory checkpoints biomarkers, and immune repertoire biomarkers. We also discuss various techniques used to detect and assess these biomarkers, detailing their respective datasets, strengths, weaknesses, and evaluative metrics. Furthermore, we present a comprehensive review of computer models for predicting the response to ICI therapy. The computer models include knowledge-based mechanistic models and data-based machine learning (ML) models. Among the knowledge-based mechanistic models are pharmacokinetic/pharmacodynamic (PK/PD) models, partial differential equation (PDE) models, signal networks-based models, quantitative systems pharmacology (QSP) models, and agent-based models (ABMs). ML models include linear regression models, logistic regression models, support vector machine (SVM)/random forest/extra trees/k-nearest neighbors (KNN) models, artificial neural network (ANN) and deep learning models. Additionally, there are hybrid models of systems biology and ML. We summarized the details of these models, outlining the datasets they utilize, their evaluation methods/metrics, and their respective strengths and limitations. By summarizing the major advances in the research on predictive biomarkers and computer models for the therapeutic effect and clinical utility of tumor ICI, we aim to assist researchers in choosing appropriate biomarkers or computer models for research exploration and help clinicians conduct precision medicine by selecting the best biomarkers.
Collapse
Affiliation(s)
- Yurong Qin
- Department of Computer Science, City University of Hong Kong, Kowloon, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Miaozhe Huo
- Department of Computer Science, City University of Hong Kong, Kowloon, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, China
| | - Xingwu Liu
- School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Kowloon, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Mouritzen MT, Ladekarl M, Hager H, Mattesen TB, Lippert JB, Frank MS, Nøhr AK, Egendal IB, Carus A. Gene Expressions and High Lymphocyte Count May Predict Durable Clinical Benefits in Patients with Advanced Non-Small-Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Cancers (Basel) 2023; 15:4480. [PMID: 37760450 PMCID: PMC10526901 DOI: 10.3390/cancers15184480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Not all patients with advanced non-small cell lung cancer (NSCLC) benefit from immune checkpoint inhibitors (ICIs). Therefore, we aimed to assess the predictive potential of gene expression profiling (GEP), peripheral immune cell counts, and clinical characteristics. METHODS The primary endpoint of this prospective, observational study was a durable clinical benefit (DCB) defined as progression-free survival >6 months. In a subgroup with histological biopsies of sufficient quality (n = 25), GEP was performed using the nCounter® PanCancer IO 360 panel. RESULTS DCB was observed in 49% of 123 included patients. High absolute lymphocyte count (ALC) and absence of liver metastases were associated with DCB (OR = 1.95, p = 0.038 and OR = 0.36, p = 0.046, respectively). GEP showed clustering of differentially expressed genes according to DCB, and a strong association between PD-L1 assessed by GEP (CD274) and immunohistochemistry (IHC) was observed (p = 0.00013). The TGF-β, dendritic cell, and myeloid signature scores were higher for patients without DCB, whereas the JAK/STAT loss signature scores were higher for patients with DCB (unadjusted p-values < 0.05). CONCLUSIONS ALC above 1.01 × 109/L and absence of liver metastases were significantly associated with DCB in ICI-treated patients with NSCLC. GEP was only feasible in 20% of the patients. GEP-derived signatures may be associated with clinical outcomes, and PD-L1 could be assessed by GEP rather than IHC.
Collapse
Affiliation(s)
- Mette T. Mouritzen
- Department of Oncology, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark; (M.L.); (A.C.)
- Clinical Cancer Research Centre, Aalborg University Hospital, Sdr. Skovvej 15, 9000 Aalborg, Denmark; (A.K.N.); (I.B.E.)
- Department of Clinical Medicine, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Denmark
| | - Morten Ladekarl
- Department of Oncology, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark; (M.L.); (A.C.)
- Clinical Cancer Research Centre, Aalborg University Hospital, Sdr. Skovvej 15, 9000 Aalborg, Denmark; (A.K.N.); (I.B.E.)
- Department of Clinical Medicine, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Denmark
| | - Henrik Hager
- Department of Clinical Pathology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark (T.B.M.)
- Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19.3, 5000 Odense, Denmark
| | - Trine B. Mattesen
- Department of Clinical Pathology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark (T.B.M.)
| | - Julie B. Lippert
- Department of Clinical Pathology, Vejle Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark (T.B.M.)
| | - Malene S. Frank
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, Sygehusvej 10, 4000 Roskilde, Denmark;
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Anne K. Nøhr
- Clinical Cancer Research Centre, Aalborg University Hospital, Sdr. Skovvej 15, 9000 Aalborg, Denmark; (A.K.N.); (I.B.E.)
- Center for Clinical Data Science (CLINDA), Aalborg University and Aalborg University Hospital, Sdr. Skovvej 15, 9000 Aalborg, Denmark
| | - Ida B. Egendal
- Clinical Cancer Research Centre, Aalborg University Hospital, Sdr. Skovvej 15, 9000 Aalborg, Denmark; (A.K.N.); (I.B.E.)
- Center for Clinical Data Science (CLINDA), Aalborg University and Aalborg University Hospital, Sdr. Skovvej 15, 9000 Aalborg, Denmark
| | - Andreas Carus
- Department of Oncology, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark; (M.L.); (A.C.)
- Clinical Cancer Research Centre, Aalborg University Hospital, Sdr. Skovvej 15, 9000 Aalborg, Denmark; (A.K.N.); (I.B.E.)
- Department of Clinical Medicine, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Denmark
| |
Collapse
|
5
|
Wang Y, Huang S, Feng X, Xu W, Luo R, Zhu Z, Zeng Q, He Z. Advances in efficacy prediction and monitoring of neoadjuvant immunotherapy for non-small cell lung cancer. Front Oncol 2023; 13:1145128. [PMID: 37265800 PMCID: PMC10229830 DOI: 10.3389/fonc.2023.1145128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) has become mainstream in the treatment of non-small cell lung cancer (NSCLC). The idea of harnessing the immune system to fight cancer is fast developing. Neoadjuvant treatment in NSCLC is undergoing unprecedented change. Chemo-immunotherapy combinations not only seem to achieve population-wide treating coverage irrespective of PD-L1 expression but also enable achieving a pathological complete response (pCR). Despite these recent advancements in neoadjuvant chemo-immunotherapy, not all patients respond favorably to treatment with ICIs plus chemo and may even suffer from severe immune-related adverse effects (irAEs). Similar to selection for target therapy, identifying patients most likely to benefit from chemo-immunotherapy may be valuable. Recently, several prognostic and predictive factors associated with the efficacy of neoadjuvant immunotherapy in NSCLC, such as tumor-intrinsic biomarkers, tumor microenvironment biomarkers, liquid biopsies, microbiota, metabolic profiles, and clinical characteristics, have been described. However, a specific and sensitive biomarker remains to be identified. Recently, the construction of prediction models for ICI therapy using novel tools, such as multi-omics factors, proteomic tests, host immune classifiers, and machine learning algorithms, has gained attention. In this review, we provide a comprehensive overview of the different positive prognostic and predictive factors in treating preoperative patients with ICIs, highlight the recent advances made in the efficacy prediction of neoadjuvant immunotherapy, and provide an outlook for joint predictors.
Collapse
Affiliation(s)
- Yunzhen Wang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sha Huang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangwei Feng
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wangjue Xu
- Department of Thoracic Surgery, Longyou County People’s Hospital, Longyou, China
| | - Raojun Luo
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyi Zhu
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingxin Zeng
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Xue C, Zhou Q, Xi H, Zhou J. Radiomics: A review of current applications and possibilities in the assessment of tumor microenvironment. Diagn Interv Imaging 2023; 104:113-122. [PMID: 36283933 DOI: 10.1016/j.diii.2022.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022]
Abstract
With the recent success in the application of immunotherapy for treating various advanced cancers, the tumor microenvironment has rapidly become an important field of research. The tumor microenvironment is complex and its characteristics strongly influence disease biology and potentially responses to systemic therapy. Accurate preoperative assessment of tumor microenvironment is of great significance for the formulation of an immunotherapy strategy and evaluation of patient prognosis. As a research hotspot in medical image analysis technology, radiomics has been applied in the auxiliary diagnosis of the tumor microenvironment. This article reviews the current status of radiomics in the elective application on tumor microenvironment and discusses potential prospects.
Collapse
Affiliation(s)
- Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Huaze Xi
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China.
| |
Collapse
|
7
|
Wang M, Zhu L, Yang X, Li J, Liu Y, Tang Y. Targeting immune cell types of tumor microenvironment to overcome resistance to PD-1/PD-L1 blockade in lung cancer. Front Pharmacol 2023; 14:1132158. [PMID: 36874015 PMCID: PMC9974851 DOI: 10.3389/fphar.2023.1132158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Lung cancer is the common malignant tumor with the highest mortality rate. Lung cancer patients have achieved benefits from immunotherapy, including immune checkpoint inhibitors (ICIs) therapy. Unfortunately, cancer patients acquire adaptive immune resistance, leading to poor prognosis. Tumor microenvironment (TME) has been demonstrated to play a critical role in participating in acquired adaptive immune resistance. TME is associated with molecular heterogeneity of immunotherapy efficacy in lung cancer. In this article, we discuss how immune cell types of TME are correlated with immunotherapy in lung cancer. Moreover, we describe the efficacy of immunotherapy in driven gene mutations in lung cancer, including KRAS, TP53, EGFR, ALK, ROS1, KEAP1, ZFHX3, PTCH1, PAK7, UBE3A, TNF-α, NOTCH, LRP1B, FBXW7, and STK11. We also emphasize that modulation of immune cell types of TME could be a promising strategy for improving adaptive immune resistance in lung cancer.
Collapse
Affiliation(s)
- Man Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Lijie Zhu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoxu Yang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiahui Li
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Ying Tang
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|