1
|
Chaponda MM, Lam HYP. Schistosoma antigens: A future clinical magic bullet for autoimmune diseases? Parasite 2024; 31:68. [PMID: 39481080 PMCID: PMC11527426 DOI: 10.1051/parasite/2024067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Autoimmune diseases are characterized by dysregulated immunity against self-antigens. Current treatment of autoimmune diseases largely relies on suppressing host immunity to prevent excessive inflammation. Other immunotherapy options, such as cytokine or cell-targeted therapies, have also been used. However, most patients do not benefit from these therapies as recurrence of the disease usually occurs. Therefore, more effort is needed to find alternative immune therapeutics. Schistosoma infection has been a significant public health problem in most developing countries. Schistosoma parasites produce eggs that continuously secrete soluble egg antigen (SEA), which is a known modulator of host immune responses by enhancing Th2 immunity and alleviating outcomes of Th1 and Th17 responses. Recently, SEA has shown promise in treating autoimmune disorders due to their substantial immune-regulatory effects. Despite this interest, how these antigens modulate human immunity demonstrates only limited pieces of evidence, and whether there is potential for Schistosoma antigens in other diseases in the future remains an unsolved question. This review discusses how SEA modulates human immune responses and its potential for development as a novel immunotherapeutic for autoimmune diseases. We also discuss the immune modulatory effects of other non-SEA schistosome antigens at different stages of the parasite's life cycle.
Collapse
Affiliation(s)
- Mphatso Mayuni Chaponda
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
| | - Ho Yin Pekkle Lam
- Master Program in Biomedical Sciences, School of Medicine, Tzu Chi University Hualien Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University Hualien Taiwan
- Institute of Medical Science, Tzu Chi University Hualien Taiwan
| |
Collapse
|
2
|
Gopalaswamy R, Aravindhan V, Subbian S. The Ambivalence of Post COVID-19 Vaccination Responses in Humans. Biomolecules 2024; 14:1320. [PMID: 39456253 PMCID: PMC11506738 DOI: 10.3390/biom14101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has prompted a massive global vaccination campaign, leading to the rapid development and deployment of several vaccines. Various COVID-19 vaccines are under different phases of clinical trials and include the whole virus or its parts like DNA, mRNA, or protein subunits administered directly or through vectors. Beginning in 2020, a few mRNA (Pfizer-BioNTech BNT162b2 and Moderna mRNA-1273) and adenovirus-based (AstraZeneca ChAdOx1-S and the Janssen Ad26.COV2.S) vaccines were recommended by WHO for emergency use before the completion of the phase 3 and 4 trials. These vaccines were mostly administered in two or three doses at a defined frequency between the two doses. While these vaccines, mainly based on viral nucleic acids or protein conferred protection against the progression of SARS-CoV-2 infection into severe COVID-19, and prevented death due to the disease, their use has also been accompanied by a plethora of side effects. Common side effects include localized reactions such as pain at the injection site, as well as systemic reactions like fever, fatigue, and headache. These symptoms are generally mild to moderate and resolve within a few days. However, rare but more serious side effects have been reported, including allergic reactions such as anaphylaxis and, in some cases, myocarditis or pericarditis, particularly in younger males. Ongoing surveillance and research efforts continue to refine the understanding of these adverse effects, providing critical insights into the risk-benefit profile of COVID-19 vaccines. Nonetheless, the overall safety profile supports the continued use of these vaccines in combating the pandemic, with regulatory agencies and health organizations emphasizing the importance of vaccination in preventing COVID-19's severe outcomes. In this review, we describe different types of COVID-19 vaccines and summarize various adverse effects due to autoimmune and inflammatory response(s) manifesting predominantly as cardiac, hematological, neurological, and psychological dysfunctions. The incidence, clinical presentation, risk factors, diagnosis, and management of different adverse effects and possible mechanisms contributing to these effects are discussed. The review highlights the potential ambivalence of human response post-COVID-19 vaccination and necessitates the need to mitigate the adverse side effects.
Collapse
Affiliation(s)
- Radha Gopalaswamy
- Directorate of Distance Education, Madurai Kamaraj University, Madurai 625021, India;
| | - Vivekanandhan Aravindhan
- Department of Genetics, Dr Arcot Lakshmanasamy Mudaliyar Post Graduate Institute of Basic Medical Sciences (Dr ALM PG IBMS), University of Madras, Taramani, Chennai 600005, India;
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
3
|
Padilla‐Flores T, Sampieri A, Vaca L. Incidence and management of the main serious adverse events reported after COVID-19 vaccination. Pharmacol Res Perspect 2024; 12:e1224. [PMID: 38864106 PMCID: PMC11167235 DOI: 10.1002/prp2.1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2n first appeared in Wuhan, China in 2019. Soon after, it was declared a pandemic by the World Health Organization. The health crisis imposed by a new virus and its rapid spread worldwide prompted the fast development of vaccines. For the first time in human history, two vaccines based on recombinant genetic material technology were approved for human use. These mRNA vaccines were applied in massive immunization programs around the world, followed by other vaccines based on more traditional approaches. Even though all vaccines were tested in clinical trials prior to their general administration, serious adverse events, usually of very low incidence, were mostly identified after application of millions of doses. Establishing a direct correlation (the cause-effect paradigm) between vaccination and the appearance of adverse effects has proven challenging. This review focuses on the main adverse effects observed after vaccination, including anaphylaxis, myocarditis, vaccine-induced thrombotic thrombocytopenia, Guillain-Barré syndrome, and transverse myelitis reported in the context of COVID-19 vaccination. We highlight the symptoms, laboratory tests required for an adequate diagnosis, and briefly outline the recommended treatments for these adverse effects. The aim of this work is to increase awareness among healthcare personnel about the serious adverse events that may arise post-vaccination. Regardless of the ongoing discussion about the safety of COVID-19 vaccination, these adverse effects must be identified promptly and treated effectively to reduce the risk of complications.
Collapse
Affiliation(s)
- Teresa Padilla‐Flores
- Departamento de Biología Celular y del desarrollo, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| | - Alicia Sampieri
- Departamento de Biología Celular y del desarrollo, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| | - Luis Vaca
- Departamento de Biología Celular y del desarrollo, Instituto de Fisiología CelularUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| |
Collapse
|
4
|
Wu PC, Lin WC, Wang CW, Chung WH, Chen CB. Cutaneous adverse reactions associated with COVID-19 vaccines: Current evidence and potential immune mechanisms. Clin Immunol 2024; 263:110220. [PMID: 38642783 DOI: 10.1016/j.clim.2024.110220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/04/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
As the number of vaccinated individuals has increased, there have been increasing reports of cutaneous hypersensitivity reactions. The main COVID-19 vaccines administered include messenger ribonucleic acid vaccines, non-replicating viral vector vaccines, inactivated whole-virus vaccines, and protein-based vaccines. These vaccines contain active components such as polyethylene glycol, polysorbate 80, aluminum, tromethamine, and disodium edetate dihydrate. Recent advances in understanding the coordination of inflammatory responses by specific subsets of lymphocytes have led to a new classification based on immune response patterns. We categorize these responses into four patterns: T helper (Th)1-, Th2-, Th17/22-, and Treg-polarized cutaneous inflammation after stimulation of COVID-19 vaccines. Although the association between COVID-19 vaccination and these cutaneous adverse reactions remains controversial, the occurrence of rare dermatoses and their short intervals suggest a possible relationship. Despite the potential adverse reactions, the administration of COVID-19 vaccines is crucial in the ongoing battle against severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Po-Chien Wu
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wan-Chen Lin
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chuang-Wei Wang
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, and Chang Gung University, Taoyuan, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, and Chang Gung University, Taoyuan, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan; Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China; Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chun-Bing Chen
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, and Chang Gung University, Taoyuan, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan; Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan; School of Medicine, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Hsu HC, Chung WH, Lin YC, Yang TS, Chang JWC, Hsieh CH, Hung SI, Lu CW, Chen JS, Chou WC, Wang CW. Clinical characteristics and genetic HLA marker for patients with oxaliplatin-induced adverse drug reactions. Allergol Int 2024:S1323-8930(24)00041-8. [PMID: 38594174 DOI: 10.1016/j.alit.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Oxaliplatin is commonly used to treat gastrointestinal malignancies. However, its applications are limited due to potential adverse drug reactions (ADRs), particularly severe anaphylactic shock. There is no method to predict or prevent ADRs caused by oxaliplatin. Therefore, we aimed to investigate the genetic HLA predisposition and immune mechanism of oxaliplatin-induced ADRs. METHODS A retrospective review was performed for 154 patients with ADRs induced by oxaliplatin during 2016-2021 recorded in our ADR notification system. HLA genotyping was conducted for 47 patients with oxaliplatin-induced ADRs, 1100 general population controls, and 34 oxaliplatin-tolerant controls in 2019-2023. The in vitro basophil activation test (BAT) was performed and oxaliplatin-specific IgE levels were determined. RESULTS The incidence of oxaliplatin-induced ADRs and anaphylactic shock in our cohort was 7.1% and 0.15%, respectively. Of the 154 patients, 67.5% suffered rash/eruption; 26.0% of the patients who could not undergo oxaliplatin rechallenge were considered to show oxaliplatin-induced immune-mediated hypersensitivity reactions (HRs). The genetic study found that the HLA-DRB∗12:01 allele was associated with oxaliplatin-induced HRs compared to the general population controls (sensitivity = 42.9%; odds ratio [OR] = 3.4; 95% CI = 1.4-8.2; P = 0.008) and tolerant controls (OR = 12; 95% CI = 2.3-63.7; P = 0.001). The in vitro BAT showed higher activation of CD63+ basophils in patients with oxaliplatin-induced HRs compared to the tolerant controls (P < 0.05). Only four patients (8.5%) with oxaliplatin-induced ADRs were positive for oxaliplatin-specific IgE. CONCLUSIONS This study found that 26.0% of patients with oxaliplatin-induced ADRs could not undergo oxaliplatin rechallenge. HLA-DRB∗12:01 is regarded as a genetic marker for oxaliplatin-induced hypersensitivity.
Collapse
Affiliation(s)
- Hung-Chih Hsu
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Hung Chung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taiwan; Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China; Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan; Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan; Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China; Department of Dermatology, Ruijin Hospital, Shanghai, China; School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yung-Chang Lin
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsai-Sheng Yang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - John Wen-Cheng Chang
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chia-Hsun Hsieh
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shuen-Iu Hung
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan; Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taiwan
| | - Chun-Wei Lu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taiwan; Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
| | - Jen-Shi Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Chi Chou
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei and Keelung, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China; Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
6
|
Wang CW, Wu MY, Chen CB, Lin WC, Wu J, Lu CW, Chen WT, Wang FY, Hui RCY, Chi MH, Chiu TM, Chang YC, Lin JY, Lin YYW, Tsai WT, Hung SI, Chung WH. Clinical characteristics and immune profiles of patients with immune-mediated alopecia associated with COVID-19 vaccinations. Clin Immunol 2023; 255:109737. [PMID: 37586672 DOI: 10.1016/j.clim.2023.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/14/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND The clinical characteristics and pathomechanism for immune-mediated alopecia following COVID-19 vaccinations are not clearly characterized. OBJECTIVE We investigated the causality and immune mechanism of COVID-19 vaccines-related alopecia areata (AA). STUDY DESIGN 27 new-onset of AA patients after COVID-19 vaccinations and 106 vaccines-tolerant individuals were enrolled from multiple medical centers for analysis. RESULTS The antinuclear antibody, total IgE, granulysin, and PARC/CCL18 as well as peripheral eosinophil count were significantly elevated in the patients with COVID-19 vaccines-related AA compared with those in the tolerant individuals (P = 2.03 × 10-5-0.039). In vitro lymphocyte activation test revealed that granulysin, granzyme B, and IFN-γ released from the T cells of COVID-19 vaccines-related AA patients could be significantly increased by COVID-19 vaccine excipients (polyethylene glycol 2000 and polysorbate 80) or spike protein (P = 0.002-0.04). CONCLUSIONS Spike protein and excipients of COVID-19 vaccines could trigger T cell-mediated cytotoxicity, which contributes to the pathogenesis of immune-mediated alopecia associated with COVID-19 vaccines.
Collapse
Affiliation(s)
- Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
| | - Ming-Ying Wu
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Bing Chen
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan; School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Chen Lin
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jennifer Wu
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chun-Wei Lu
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Ti Chen
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fang-Ying Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Biomedical Engineering, College of Medicine, College of Engineering, National Taiwan University, Taiwan
| | - Rosaline Chung-Yee Hui
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Min-Hui Chi
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsu-Man Chiu
- Department of Dermatology, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ya-Ching Chang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jing Yi Lin
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yang Yu-Wei Lin
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan
| | - Wan-Ting Tsai
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan
| | - Shuen-Iu Hung
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan; Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan; Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan; Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China; Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China; Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
7
|
Lee Y, Jeong M, Park J, Jung H, Lee H. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics. Exp Mol Med 2023; 55:2085-2096. [PMID: 37779140 PMCID: PMC10618257 DOI: 10.1038/s12276-023-01086-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2023] Open
Abstract
Several studies have utilized a lipid nanoparticle delivery system to enhance the effectiveness of mRNA therapeutics and vaccines. However, these nanoparticles are recognized as foreign materials by the body and stimulate innate immunity, which in turn impacts adaptive immunity. Therefore, it is crucial to understand the specific type of innate immune response triggered by lipid nanoparticles. This article provides an overview of the immunological response in the body, explores how lipid nanoparticles activate the innate immune system, and examines the adverse effects and immunogenicity-related development pathways associated with these nanoparticles. Finally, we highlight and explore strategies for regulating the immunogenicity of lipid nanoparticles.
Collapse
Affiliation(s)
- Yeji Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Michaela Jeong
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Jeongeun Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Hyein Jung
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
8
|
Wang CW, Chen CB, Lu CW, Chen WT, Hui RCY, Chiu TM, Chi MH, Lin JC, Huang YH, Chang YC, Wu J, Chen KY, Lin YYW, Ger TY, Lin JY, Tsai WT, Pan YJ, Chung WH. Characteristics of immune response profile in patients with immediate allergic and autoimmune urticarial reactions induced by SARS-CoV-2 vaccines. J Autoimmun 2023; 138:103054. [PMID: 37245259 DOI: 10.1016/j.jaut.2023.103054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/30/2022] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
Severe allergic reactions following SARS-COV-2 vaccination are generally rare, but the reactions are increasingly reported. Some patients may develop prolonged urticarial reactions following SARS-COV-2 vaccination. Herein, we investigated the risk factors and immune mechanisms for patients with SARS-COV-2 vaccines-induced immediate allergy and chronic urticaria (CU). We prospectively recruited and analyzed 129 patients with SARS-COV-2 vaccine-induced immediate allergic and urticarial reactions as well as 115 SARS-COV-2 vaccines-tolerant individuals from multiple medical centers during 2021-2022. The clinical manifestations included acute urticaria, anaphylaxis, and delayed to chronic urticaria developed after SARS-COV-2 vaccinations. The serum levels of histamine, IL-2, IL-4, IL-6, IL-8, IL-17 A, TARC, and PARC were significantly elevated in allergic patients comparing to tolerant subjects (P-values = 4.5 × 10-5-0.039). Ex vivo basophil revealed that basophils from allergic patients could be significantly activated by SARS-COV-2 vaccine excipients (polyethylene glycol 2000 and polysorbate 80) or spike protein (P-values from 3.5 × 10-4 to 0.043). Further BAT study stimulated by patients' autoserum showed positive in 81.3% of patients with CU induced by SARS-COV-2 vaccination (P = 4.2 × 10-13), and the reactions could be attenuated by anti-IgE antibody. Autoantibodies screening also identified the significantly increased of IgE-anti-IL-24, IgG-anti-FcεRI, IgG-anti-thyroid peroxidase (TPO), and IgG-anti-thyroid-related proteins in SARS-COV-2 vaccines-induced CU patients comparing to SARS-COV-2 vaccines-tolerant controls (P-values = 4.6 × 10-10-0.048). Some patients with SARS-COV-2 vaccines-induced recalcitrant CU patients could be successfully treated with anti-IgE therapy. In conclusion, our results revealed that multiple vaccine components, inflammatory cytokines, and autoreactive IgG/IgE antibodies contribute to SARS-COV-2 vaccine-induced immediate allergic and autoimmune urticarial reactions.
Collapse
Affiliation(s)
- Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Bing Chen
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, School of Medicine, National Tsing Hua University, Hsinchu, Taiwan; Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chun-Wei Lu
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Ti Chen
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Rosaline Chung-Yee Hui
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsu-Man Chiu
- Department of Dermatology, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Min-Hui Chi
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jing-Chi Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Allergy Immunology and Rheumatology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yu-Huei Huang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Ching Chang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jennifer Wu
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Kuan-Yu Chen
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yang Yu-Wei Lin
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan
| | - Tzong-Yun Ger
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jing Yi Lin
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Ting Tsai
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan
| | - Yen-Ju Pan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taipei, Tucheng and Keelung, Taiwan; Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taiwan; Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan; Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan; Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China; Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
9
|
Wung CH, Wang CW, Lai KC, Chen CB, Chen WT, Hung SI, Chung WH. Current understanding of genetic associations with delayed hypersensitivity reactions induced by antibiotics and anti-osteoporotic drugs. Front Pharmacol 2023; 14:1183491. [PMID: 37180708 PMCID: PMC10169607 DOI: 10.3389/fphar.2023.1183491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Drug-induced delayed hypersensitivity reactions (DHRs) is still a clinical and healthcare burden in every country. Increasing reports of DHRs have caught our attention to explore the genetic relationship, especially life-threatening severe cutaneous adverse drug reactions (SCARs), including acute generalized exanthematous pustulosis (AGEP), drug reactions with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN). In recent years, many studies have investigated the immune mechanism and genetic markers of DHRs. Besides, several studies have stated the associations between antibiotics-as well as anti-osteoporotic drugs (AOD)-induced SCARs and specific human leukocyte antigens (HLA) alleles. Strong associations between drugs and HLA alleles such as co-trimoxazole-induced DRESS and HLA-B*13:01 (Odds ratio (OR) = 45), dapsone-DRESS and HLA-B*13:01 (OR = 122.1), vancomycin-DRESS and HLA-A*32:01 (OR = 403), clindamycin-DHRs and HLA-B*15:27 (OR = 55.6), and strontium ranelate (SR)-SJS/TEN and HLA-A*33:03 (OR = 25.97) are listed. We summarized the immune mechanism of SCARs, update the latest knowledge of pharmacogenomics of antibiotics- and AOD-induced SCARs, and indicate the potential clinical use of these genetic markers for SCARs prevention in this mini review article.
Collapse
Affiliation(s)
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
| | - Kuo-Chu Lai
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Chun-Bing Chen
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Ti Chen
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shuen-Iu Hung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | | |
Collapse
|
10
|
Abufares HI, Oyoun Alsoud L, Alqudah MAY, Shara M, Soares NC, Alzoubi KH, El-Huneidi W, Bustanji Y, Soliman SSM, Semreen MH. COVID-19 Vaccines, Effectiveness, and Immune Responses. Int J Mol Sci 2022; 23:15415. [PMID: 36499742 PMCID: PMC9737588 DOI: 10.3390/ijms232315415] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has captivated the globe's attention since its emergence in 2019. This highly infectious, spreadable, and dangerous pathogen has caused health, social, and economic crises. Therefore, a worldwide collaborative effort was made to find an efficient strategy to overcome and develop vaccines. The new vaccines provide an effective immune response that safeguards the community from the virus' severity. WHO has approved nine vaccines for emergency use based on safety and efficacy data collected from various conducted clinical trials. Herein, we review the safety and effectiveness of the WHO-approved COVID-19 vaccines and associated immune responses, and their impact on improving the public's health. Several immunological studies have demonstrated that vaccination dramatically enhances the immune response and reduces the likelihood of future infections in previously infected individuals. However, the type of vaccination and individual health status can significantly affect immune responses. Exposure of healthy individuals to adenovirus vectors or mRNA vaccines causes the early production of antibodies from B and T cells. On the other hand, unhealthy individuals were more likely to experience harmful events due to relapses in their existing conditions. Taken together, aligning with the proper vaccination to a patient's case can result in better outcomes.
Collapse
Affiliation(s)
- Haneen Imad Abufares
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Leen Oyoun Alsoud
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mohammad A. Y. Alqudah
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mohd Shara
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Nelson C. Soares
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Karem H. Alzoubi
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Yasser Bustanji
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sameh S. M. Soliman
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mohammad H. Semreen
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|