1
|
Lu D, Zhang Y, Liang S, Li Y, Qing J, Gu L, Xu X, Wang Z, Gao X, Liu H, Zhang X, Zhou Y, Zhang P. M2 Macrophages Guide Periosteal Stromal Cell Recruitment and Initiate Bone Injury Regeneration. Biomedicines 2024; 12:1205. [PMID: 38927412 PMCID: PMC11200943 DOI: 10.3390/biomedicines12061205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
The periosteum plays a critical role in bone repair and is significantly influenced by the surrounding immune microenvironment. In this study, we employed 10× single-cell RNA sequencing to create a detailed cellular atlas of the swine cranial periosteum, highlighting the cellular dynamics and interactions essential for cranial bone injury repair. We noted that such injuries lead to an increase in M2 macrophages, which are key in modulating the periosteum's immune response and driving the bone regeneration process. These macrophages actively recruit periosteal stromal cells (PSCs) by secreting Neuregulin 1 (NRG1), a crucial factor in initiating bone regeneration. This recruitment process emphasizes the critical role of PSCs in effective bone repair, positioning them as primary targets for therapeutic interventions. Our results indicate that enhancing the interaction between M2 macrophages and PSCs could significantly improve the outcomes of treatments aimed at cranial bone repair and regeneration.
Collapse
Affiliation(s)
- Dazhuang Lu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yingfei Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Shimin Liang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yang Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jia Qing
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Lanxin Gu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xiuyun Xu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zeying Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xin Gao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hao Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (D.L.); (Y.Z.); (S.L.); (Y.L.); (J.Q.); (L.G.); (X.X.); (Z.W.); (X.G.); (H.L.); (Y.Z.)
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Institute of Advanced Clinical Medicine, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
2
|
Wang K, Zhou M, Zhang Y, Jin Y, Xue Y, Mao D, Rui Y. Fibromodulin facilitates the osteogenic effect of Masquelet's induced membrane by inhibiting the TGF-β/SMAD signaling pathway. Biomater Sci 2024; 12:1898-1913. [PMID: 38426394 DOI: 10.1039/d3bm01665j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Masquelet's induced membrane (IM) technique is a promising treatment strategy for the repair of substantial bone defects. The formation of an IM around polymethylmethacrylate bone cement plays a crucial role in this technique. Several studies have indicated that IMs have bioactivity because they contain abundant blood vessels, a variety of cells, and biological factors. The bioactivity of an IM increases during the initial stages of formation, thereby facilitating bone regeneration and remodeling. Nevertheless, the precise mechanisms underlying the enhancement of IM bioactivity and the promotion of bone regeneration necessitate further investigation. In this study, we successfully developed a Masquelet IM model of critical femur defects in rats. By employing proteomics analysis and biological detection techniques, we identified fibromodulin (FMOD) as a pivotal factor contributing to angiogenesis and the enhanced bioactivity of the IM. A significant increase in angiogenesis and the expression of bioactive factors in the IM was also observed with the upregulation of FMOD expression. Furthermore, this effect is mediated through the inhibition of the transforming growth factor beta (TGF-β)/SMAD signaling pathway. We also demonstrated that administering recombinant human FMOD enhanced osteogenesis in rat bone marrow mesenchymal stem cells and angiogenesis in human umbilical vein endothelial cells in vitro. Furthermore, the negative regulatory effect of the TGF-β signaling pathway was verified. In conclusion, this study provides a novel theoretical basis for the application of IMs in bone-defect reconstruction and explores possible new mechanisms that may play an important role in promoting the bioactivity and osteogenic potential of IMs.
Collapse
Affiliation(s)
- Kai Wang
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
- Suzhou Medical College of Soochow University, Suzhou, 215031, China
| | - Ming Zhou
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
- Suzhou Medical College of Soochow University, Suzhou, 215031, China
| | - Yuanshu Zhang
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| | - Yesheng Jin
- Suzhou Medical College of Soochow University, Suzhou, 215031, China
| | - Yuan Xue
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| | - Dong Mao
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Yongjun Rui
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| |
Collapse
|
3
|
Borgiani E, Nasello G, Ory L, Herpelinck T, Groeneveldt L, Bucher CH, Schmidt-Bleek K, Geris L. COMMBINI: an experimentally-informed COmputational Model of Macrophage dynamics in the Bone INjury Immunoresponse. Front Immunol 2023; 14:1231329. [PMID: 38130715 PMCID: PMC10733790 DOI: 10.3389/fimmu.2023.1231329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/11/2023] [Indexed: 12/23/2023] Open
Abstract
Bone fracture healing is a well-orchestrated but complex process that involves numerous regulations at different scales. This complexity becomes particularly evident during the inflammatory stage, as immune cells invade the healing region and trigger a cascade of signals to promote a favorable regenerative environment. Thus, the emergence of criticalities during this stage might hinder the rest of the process. Therefore, the investigation of the many interactions that regulate the inflammation has a primary importance on the exploration of the overall healing progression. In this context, an in silico model named COMMBINI (COmputational Model of Macrophage dynamics in the Bone INjury Immunoresponse) has been developed to investigate the mechano-biological interactions during the early inflammatory stage at the tissue, cellular and molecular levels. An agent-based model is employed to simulate the behavior of immune cells, inflammatory cytokines and fracture debris as well as their reciprocal multiscale biological interactions during the development of the early inflammation (up to 5 days post-injury). The strength of the computational approach is the capacity of the in silico model to simulate the overall healing process by taking into account the numerous hidden events that contribute to its success. To calibrate the model, we present an in silico immunofluorescence method that enables a direct comparison at the cellular level between the model output and experimental immunofluorescent images. The combination of sensitivity analysis and a Genetic Algorithm allows dynamic cooperation between these techniques, enabling faster identification of the most accurate parameter values, reducing the disparity between computer simulation and histological data. The sensitivity analysis showed a higher sensibility of the computer model to the macrophage recruitment ratio during the early inflammation and to proliferation in the late stage. Furthermore, the Genetic Algorithm highlighted an underestimation of macrophage proliferation by in vitro experiments. Further experiments were conducted using another externally fixated murine model, providing an independent validation dataset. The validated COMMBINI platform serves as a novel tool to deepen the understanding of the intricacies of the early bone regeneration phases. COMMBINI aims to contribute to designing novel treatment strategies in both the biological and mechanical domains.
Collapse
Affiliation(s)
- Edoardo Borgiani
- Biomechanics Research Unit, GIGA-In Silico Medicine, University of Liège, Liège, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Division of Biomechanics, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Gabriele Nasello
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Liesbeth Ory
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Tim Herpelinck
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Lisanne Groeneveldt
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Christian H. Bucher
- Julius Wolff Institute, Berlin Institute of Health, Charitè – Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute, Berlin Institute of Health, Charitè – Universitätsmedizin Berlin, Berlin, Germany
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA-In Silico Medicine, University of Liège, Liège, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Division of Biomechanics, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Nikovics K, Favier AL, Rocher M, Mayinga C, Gomez J, Dufour-Gaume F, Riccobono D. In Situ Identification of Both IL-4 and IL-10 Cytokine-Receptor Interactions during Tissue Regeneration. Cells 2023; 12:1522. [PMID: 37296643 PMCID: PMC10253026 DOI: 10.3390/cells12111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Cytokines secreted by individual immune cells regulate tissue regeneration and allow communication between various cell types. Cytokines bind to cognate receptors and trigger the healing process. Determining the orchestration of cytokine interactions with their receptors on their cellular targets is essential to fully understanding the process of inflammation and tissue regeneration. To this end, we have investigated the interactions of Interleukin-4 cytokine (IL-4)/Interleukin-4 cytokine receptor (IL-4R) and Interleukin-10 cytokine (IL-10)/Interleukin-10 cytokine receptor (IL-10R) using in situ Proximity Ligation Assays in a regenerative model of skin, muscle and lung tissues in the mini-pig. The pattern of protein-protein interactions was distinct for the two cytokines. IL-4 bound predominantly to receptors on macrophages and endothelial cells around the blood vessels while the target cells of IL-10 were mainly receptors on muscle cells. Our results show that in situ studies of cytokine-receptor interactions can unravel the fine details of the mechanism of action of cytokines.
Collapse
Affiliation(s)
- Krisztina Nikovics
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France; (A.-L.F.); (M.R.); (C.M.); (J.G.)
| | - Anne-Laure Favier
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France; (A.-L.F.); (M.R.); (C.M.); (J.G.)
| | - Mathilde Rocher
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France; (A.-L.F.); (M.R.); (C.M.); (J.G.)
| | - Céline Mayinga
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France; (A.-L.F.); (M.R.); (C.M.); (J.G.)
| | - Johanna Gomez
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France; (A.-L.F.); (M.R.); (C.M.); (J.G.)
| | - Frédérique Dufour-Gaume
- War Traumatology Unit, Department of NRBC Defense, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France;
| | - Diane Riccobono
- Department of Radiation Bioeffects, French Armed Forces Biomedical Research Institute, 1, Place du Général Valérie André, 91223 Brétigny-sur-Orge, France;
| |
Collapse
|
5
|
Struckmeier AK, Wehrhan F, Preidl R, Mike M, Mönch T, Eilers L, Ries J, Trumet L, Lutz R, Geppert C, Kesting M, Weber M. Alterations in macrophage polarization in the craniofacial and extracranial skeleton after zoledronate application and surgical interventions - an in vivo experiment. Front Immunol 2023; 14:1204188. [PMID: 37292209 PMCID: PMC10244663 DOI: 10.3389/fimmu.2023.1204188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Purpose Medication-related osteonecrosis occurs exclusively in the jaw bones. However, the exact pathogenesis of medication-related osteonecrosis of the jaw (MRONJ) and the unique predisposition of the jaw bones have not been elucidated, making its treatment a challenge. Recent evidence indicates that macrophages might play a pivotal role in MRONJ pathogenesis. The aim of the present study was to compare the macrophage populations between the craniofacial and extracranial skeleton and to investigate the changes induced by zoledronate (Zol) application and surgical interventions. Materials and methods An in vivo experiment was performed. 120 wistar rats were randomized to 4 groups (G1, G2, G3, G4). G1 served as an untreated control group. G2 and G4 received Zol injections for 8 weeks. Afterwards, the right lower molar of the animals from G3 and G4 was extracted and the right tibia osteotomized followed by osteosynthesis. Tissue samples were taken from the extraction socket and the tibia fracture at fixed time points. Immunohistochemistry was conducted to determine the labeling indexes of CD68+ and CD163+ macrophages. Results Comparing the mandible and the tibia, we observed a significantly higher number of macrophages and a heightened pro-inflammatory environment in the mandible compared to the tibia. Tooth extraction caused an increase of the overall number of macrophages and a shift toward a more pro-inflammatory microenvironment in the mandible. Zol application amplified this effect. Conclusion Our results indicate fundamental immunological differences between the jaw bone and the tibia, which might be a reason for the unique predisposition for MRONJ in the jaw bones. The more pro-inflammatory environment after Zol application and tooth extraction might contribute to the pathogenesis of MRONJ. Targeting macrophages might represent an attractive strategy to prevent MRONJ and improve therapy. In addition, our results support the hypothesis of an anti-tumoral and anti-metastatic effect induced by BPs. However, further studies are needed to delineate the mechanisms and specify the contributions of the various macrophage phenotypes.
Collapse
Affiliation(s)
- Ann-Kristin Struckmeier
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Falk Wehrhan
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Raimund Preidl
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Melanie Mike
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Tina Mönch
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Lea Eilers
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Jutta Ries
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Leah Trumet
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer Lutz
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Carol Geppert
- Institute of Pathology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Manuel Weber
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
6
|
Favier AL, Nikovics K. Molecular and Cellular Mechanisms of Inflammation and Tissue Regeneration. Biomedicines 2023; 11:biomedicines11051416. [PMID: 37239087 DOI: 10.3390/biomedicines11051416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past 70 years, significant progress has been made in understanding the molecular and cellular mechanisms of inflammation and tissue regeneration [...].
Collapse
Affiliation(s)
- Anne-Laure Favier
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Bretigny sur Orge, France
| | - Krisztina Nikovics
- Imagery Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Bretigny sur Orge, France
| |
Collapse
|
7
|
Durand M, Oger M, Nikovics K, Venant J, Guillope AC, Jouve E, Barbier L, Bégot L, Poirier F, Rousseau C, Pitois O, Mathieu L, Favier AL, Lutomski D, Collombet JM. Influence of the Immune Microenvironment Provided by Implanted Biomaterials on the Biological Properties of Masquelet-Induced Membranes in Rats: Metakaolin as an Alternative Spacer. Biomedicines 2022; 10:biomedicines10123017. [PMID: 36551773 PMCID: PMC9776074 DOI: 10.3390/biomedicines10123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Macrophages play a key role in the inflammatory phase of wound repair and foreign body reactions-two important processes in the Masquelet-induced membrane technique for extremity reconstruction. The macrophage response depends largely on the nature of the biomaterials implanted. However, little is known about the influence of the macrophage microenvironment on the osteogenic properties of the induced membrane or subsequent bone regeneration. We used metakaolin, an immunogenic material, as an alternative spacer to standard polymethylmethacrylate (PMMA) in a Masquelet model in rats. Four weeks after implantation, the PMMA- and metakaolin-induced membranes were harvested, and their osteogenic properties and macrophage microenvironments were investigated by histology, immunohistochemistry, mass spectroscopy and gene expression analysis. The metakaolin spacer induced membranes with higher levels of two potent pro-osteogenic factors, transforming growth factor-β (TGF-β) and bone morphogenic protein-2 (BMP-2). These alternative membranes thus had greater osteogenic activity, which was accompanied by a significant expansion of the total macrophage population, including both the M1-like and M2-like subtypes. Microcomputed tomographic analysis showed that metakaolin-induced membranes supported bone regeneration more effectively than PMMA-induced membranes through better callus properties (+58%), although this difference was not significant. This study provides the first evidence of the influence of the immune microenvironment on the osteogenic properties of the induced membranes.
Collapse
Affiliation(s)
- Marjorie Durand
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
- Correspondence:
| | - Myriam Oger
- Imaging Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Krisztina Nikovics
- Imaging Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Julien Venant
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
- Tissue Engineering Research Unit-URIT, Sorbonne Paris Nord University, 93000 Bobigny, France
| | - Anne-Cecile Guillope
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Eugénie Jouve
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Laure Barbier
- Molecular Biology Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Laurent Bégot
- Imaging Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Florence Poirier
- Tissue Engineering Research Unit-URIT, Sorbonne Paris Nord University, 93000 Bobigny, France
| | - Catherine Rousseau
- Molecular Biology Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Olivier Pitois
- Laboratoire Navier, Gustave Eiffel University, Ecole des Ponts ParisTech, CNRS, 77447 Marne-la-Vallée, France
| | - Laurent Mathieu
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
- Department of Surgery, Ecole du Val-de-Grace, French Military Health Service Academy, 1 Place Alphonse Laveran, 75005 Paris, France
| | - Anne-Laure Favier
- Imaging Unit, Department of Platforms and Technology Research, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| | - Didier Lutomski
- Tissue Engineering Research Unit-URIT, Sorbonne Paris Nord University, 93000 Bobigny, France
| | - Jean-Marc Collombet
- Osteo-Articulary Biotherapy Unit, Department of Medical and Surgical Assistance to the Armed Forces, French Armed Forces Biomedical Research Institute, 91223 Brétigny-sur-Orge, France
| |
Collapse
|