1
|
Terakawa H, Kawarai Y, Tajiri I, Inage K, Suzuki-Narita M, Takeuchi J, Hirasawa R, Hagiwara S, Nakamura J, Ohtori S. Impact of Intra-Articular Diclofenac Etalhyaluronate on Pain and Osteoarthritic Changes in Advanced and End-Stage Hip Osteoarthritis. J Orthop Res 2025. [PMID: 40235431 DOI: 10.1002/jor.26088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/22/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025]
Abstract
Diclofenac etalhyaluronate combines the sustained-release properties of diclofenac with the therapeutic benefits of hyaluronic acid, providing extended analgesic effects for osteoarthritis management. This study investigated the effects of diclofenac etalhyaluronate and subsequent osteoarthritic changes in rat models of advanced and end-stage osteoarthritis. Monosodium iodoacetate (0.5 or 2.0 mg) was injected directly into the right hip joint of rats (n = 8 rats/group) using a posterior approach to induce osteoarthritis. Four weeks after monosodium iodoacetate administration, diclofenac etalhyaluronate (0.25 mg/25 µL) or 25 µL saline was administered in the same way. Pain behavior, number of microglia in the dorsal horn of the spinal cord, radiological features on microcomputed tomography, and histology of the hip joint were evaluated. Administration of diclofenac etalhyaluronate increased the pain threshold and reduced the number of microglia in the dorsal horn of the spinal cord in both models. However, radiological and histological examinations did not detect significant arthritic changes in either group that received diclofenac etalhyaluronate. Intra-articular administration, therefore, contributes to pain relief and improvement of central sensitization in advanced and end-stage osteoarthritis of the hip without subsequent progression of osteoarthritis. These findings highlight the potential of intra-articular administration of diclofenac etalhyaluronate as a conservative treatment option for advanced and end-stage hip osteoarthritis, particularly for patients who may be unsuitable for surgery or have limited response to oral nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Hiroakira Terakawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuya Kawarai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ikuko Tajiri
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhide Inage
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Miyako Suzuki-Narita
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jun Takeuchi
- Medical Affairs, Seikagaku Corporation, Tokyo, Japan
| | - Rui Hirasawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeo Hagiwara
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Junichi Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
2
|
Wang Z, Li ZZ, Han XM, Dong J, Yin MY, Song J, Zhuang T, Wang Y. Discovery of Novel pH-Sensitive μ-Opioid Receptor Agonists as Potent Analgesics with Reduced Side Effects. ACS Med Chem Lett 2025; 16:285-293. [PMID: 39967625 PMCID: PMC11831565 DOI: 10.1021/acsmedchemlett.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Although μ-opioid receptor (MOR) agonists are the most effective drugs for relieving acute pain, nonselective activation of MOR can also lead to serious side effects. There is an urgent need for novel analgesics that can selectively activate MOR under pathological conditions while avoiding side effects under normal physiological conditions. In this study, a series of pH-sensitive 4-propionamide piperidine derivatives were synthesized and evaluated for their MOR activities and antinociceptive effects. Among them, compound 22 showed high pH sensitivity for MOR with a K i pH 7.4/K i pH 6.4 ratio of 6.6. Compound 22 acted as an MOR agonist in the functional test. Compound 22 exhibited good antinociceptive effects in the acetic acid-induced writhing test (ED50 = 1.5 mg/kg) and carrageenan-induced inflammatory pain model (ED50 = 3.3 mg/kg) in mice. Moreover, compound 22 showed reduced side effects when compared to the equianalgesic dose of fentanyl, including physical dependence, hyperlocomotion, and constipation. Compound 22 holds promise as a safe candidate for further development as an analgesic with diminished side effects.
Collapse
Affiliation(s)
- Zhen Wang
- School
of Pharmaceutical Sciences, Hubei University
of Medicine, Shiyan 442000, China
- Jiangsu
Key Laboratory of Marine Pharmaceutical Compound Screening, School
of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zong-Zheng Li
- Jiangsu
Key Laboratory of Marine Pharmaceutical Compound Screening, School
of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiao-Min Han
- Jiangsu
Key Laboratory of Marine Pharmaceutical Compound Screening, School
of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Dong
- Grand
Life Sciences (Liaoning) Co., LTD., Shenyang 110171, China
| | - Ming-Yue Yin
- Jiangsu
Key Laboratory of Marine Pharmaceutical Compound Screening, School
of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jie Song
- Jiangsu
Key Laboratory of Marine Pharmaceutical Compound Screening, School
of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Tao Zhuang
- Jiangsu
Key Laboratory of Marine Pharmaceutical Compound Screening, School
of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- College
of Life Science and Technology, Huazhong
University of Science and Technology, Wuhan 430074, China
| | - Yuan Wang
- School
of Pharmaceutical Sciences, Hubei University
of Medicine, Shiyan 442000, China
| |
Collapse
|
3
|
Li ZZ, Wang Z, Chen X, Feng HQ, Yao XY, Song J, Xu B, Jin J, Cao X, Zhuang T. Benzylpiperidine derivatives as new dual μ-opioid and σ 1 receptor ligands with potent antinociceptive effects. Bioorg Chem 2024; 153:107921. [PMID: 39492131 DOI: 10.1016/j.bioorg.2024.107921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Dual-acting μ-opioid receptor (MOR)/sigma-1 receptor (σ1R) ligands have displayed promise in exerting robust antinociceptive effects while reducing opioid-related side effects. To discover safer and more effective analgesics, we designed, prepared, and evaluated 30 benzylpiperidine derivatives as dual MOR and σ1R ligands. The obtained benzylpiperidine analogs were tested for MOR and σ1R binding affinity in vitro. The best compound 52 showed high affinity for both MOR [Ki (MOR) = 56.4 nM] and σ1R [Ki (σ1R) = 11.0 nM] and produced potent antinociceptive effects in the abdominal contraction test (ED50 = 4.04 mg/kg in mice), carrageenan-induced inflammatory pain model (ED50 = 6.88 mg/kg in mice), formalin test (ED50 = 13.98 mg/kg in rats) and complete Freund's adjuvant (CFA)-induced chronic pain model (ED50 = 7.62 mg/kg in mice). Moreover, 52 had less MOR-related adverse effects than oxycodone, including constipation, acute hyperlocomotion and physical dependence. The above results suggested that 52 may be a promising candidate for the development of safer analgesics.
Collapse
MESH Headings
- Animals
- Ligands
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Mice
- Analgesics/pharmacology
- Analgesics/chemistry
- Analgesics/chemical synthesis
- Receptors, sigma/antagonists & inhibitors
- Receptors, sigma/metabolism
- Piperidines/pharmacology
- Piperidines/chemistry
- Piperidines/chemical synthesis
- Male
- Structure-Activity Relationship
- Rats
- Molecular Structure
- Rats, Sprague-Dawley
- Dose-Response Relationship, Drug
- Pain/drug therapy
- Carrageenan
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/chemical synthesis
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Zong-Zheng Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhen Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiong Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hong-Qing Feng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xing-Yu Yao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jie Song
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ben Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jian Jin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Xudong Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Tao Zhuang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
4
|
Xiao XY, Chen YM, Zhu J, Yin MY, Huang CN, Qin HM, Liu SX, Xiao Y, Fang HW, Zhuang T, Chen Y. The synergistic anti-nociceptive effects of nefopam and gabapentinoids in inflammatory, osteoarthritis, and neuropathic pain mouse models. Eur J Pharmacol 2024; 977:176738. [PMID: 38876275 DOI: 10.1016/j.ejphar.2024.176738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Pain is a common public health problem and remains as an unmet medical need. Currently available analgesics usually have limited efficacy or are accompanied by many adverse side effects. To achieve satisfactory pain relief by multimodal analgesia, new combinations of nefopam and gabapentinoids (pregabalin/gabapentin) were designed and assessed in inflammatory, osteoarthritis and neuropathic pain. Isobolographic analysis was performed to analyze the interactions between nefopam and gabapentinoids in carrageenan-induced inflammatory pain, mono-iodoacetate-induced osteoarthritis pain and paclitaxel-induced peripheral neuropathic pain in mice. The anti-inflammatory effect and motor performance of monotherapy or their combinations were evaluated in the carrageenan-induced inflammatory responses and rotarod test, respectively. Nefopam (1, 3, 5, 10, 30 mg/kg, p.o.), pregabalin (3, 6, 12, 24 mg/kg, p.o.) or gabapentin (25, 50, 75, 100 mg/kg, p.o.) dose-dependently reversed mechanical allodynia in three pain models. Isobolographic analysis indicated that the combinations of nefopam and gabapentinoids exerted synergistic anti-nociceptive effects in inflammatory, osteoarthritis, and neuropathic pain mouse models, as evidenced by the experimental ED50 (median effective dose) falling below the predicted additive line. Moreover, the combination of nefopam-pregabalin/gabapentin alleviated carrageenan-induced inflammation and edema, and also prevented gabapentinoids-related sedation or ataxia by lowering their effective doses. Collectively, the co-administration of nefopam and gabapentinoids showed synergistic analgesic effects and may result in improved therapeutic benefits for treating pain.
Collapse
Affiliation(s)
- Xin-Yi Xiao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yan-Ming Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jin Zhu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ming-Yue Yin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Chao-Nan Huang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hui-Min Qin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shu-Xian Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yang Xiao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Heng-Wei Fang
- School of Pharmacy, Henan University, Kaifeng, 475001, China
| | - Tao Zhuang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Yin Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
5
|
Qin HM, Luo ZK, Zhou HL, Zhu J, Xiao XY, Xiao Y, Zhuang T, Zhang GS. Novel drug-drug salt crystals of metformin with ibuprofen or naproxen: Improved solubility, dissolution rate, and synergistic antinociceptive effects. Int J Pharm 2024; 657:124126. [PMID: 38626845 DOI: 10.1016/j.ijpharm.2024.124126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
As the monotherapy of available analgesics is usually accompanied by serious side effects or limited efficacy in the management of chronic pain, multimodal analgesia is widely used to achieve improved benefit-to-risk ratios in clinic. Drug-drug salts are extensively researched to optimize the physicochemical properties of active pharmaceutical ingredients (APIs) and achieve clinical benefits compared with individual APIs or their combination. New drug-drug salt crystals metformin-ibuprofen (MET-IBU) and metformin-naproxen (MET-NAP) were prepared from metformin (MET) and two poorly water-soluble anti-inflammatory drugs (IBU and NAP) by the solvent evaporation method. The structures of these crystals were confirmed by single crystal and powder X-ray diffraction, Hirshfeld surface, Fourier transform infrared spectroscopy and thermal analysis. Both MET-IBU and MET-NAP showed significantly improved solubility and intrinsic dissolution rate than the pure IBU or NAP. The stability test indicated that MET-IBU and MET-NAP have excellent physical stability under stressing test (10 days) and accelerated conditions (3 months). Moreover, isobolographic analysis suggested that MET-IBU and MET-NAP exerted potent and synergistic antinociceptive effects in λ-Carrageenan-induced inflammatory pain in mice, and both of them had an advantage in rapid pain relief. These results demonstrated the potential of MET-IBU and MET-NAP to achieve synergistic antinociceptive effects by developing drug-drug salt crystals.
Collapse
Affiliation(s)
- Hui-Min Qin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zheng-Kang Luo
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hui-Ling Zhou
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jin Zhu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xin-Yi Xiao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yang Xiao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Tao Zhuang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Gui-Sen Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
6
|
Raup-Konsavage WM, Sepulveda DE, Wang J, Dokholyan NV, Vrana KE, Graziane NM. Antinociceptive Effects of Cannabichromene (CBC) in Mice: Insights from von Frey, Tail-Flick, Formalin, and Acetone Tests. Biomedicines 2023; 12:83. [PMID: 38255191 PMCID: PMC10813533 DOI: 10.3390/biomedicines12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Cannabis sativa contains minor cannabinoids that have potential therapeutic value in pain management. However, detailed experimental evidence for the antinociceptive effects of many of these minor cannabinoids remains lacking. Here, we employed artificial intelligence (AI) to perform compound-protein interaction estimates with cannabichromene (CBC) and receptors involved in nociceptive signaling. Based on our findings, we investigated the antinociceptive properties of CBC in naïve or neuropathic C57BL/6 male and female mice using von Frey (mechanical allodynia), tail-flick (noxious radiant heat), formalin (acute and persistent inflammatory pain), and acetone (cold thermal) tests. For von Frey assessments, CBC dose (0-20 mg/kg, i.p.) and time (0-6 h) responses were measured in male and female neuropathic mice. For tail-flick, formalin, and acetone assays, CBC (20 mg/kg, i.p.) was administered to naïve male and female mice 1 h prior to testing. The results show that CBC (10 and 20 mg/kg, i.p.) significantly reduced mechanical allodynia in neuropathic male and female mice 1-2 h after treatment. Additionally, CBC treatment caused significant reductions in nociceptive behaviors in the tail-flick assay and in both phase 1 and phase 2 of the formalin test. Finally, we found a significant interaction in neuropathic male mice in the acetone test. In conclusion, our results suggest that CBC targets receptors involved in nociceptive signaling and imparts antinociceptive properties that may benefit males and females afflicted with diverse forms of acute or chronic/persistent pain.
Collapse
Affiliation(s)
| | - Diana E. Sepulveda
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Anesthesiology & Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Chemistry, Penn State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
| | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Nicholas M. Graziane
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Anesthesiology & Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
7
|
Huang CN, Chen YM, Xiao XY, Zhou HL, Zhu J, Qin HM, Jiang X, Li Z, Zhuang T, Zhang GS. Pregabalin can interact synergistically with Kv7 channel openers to exert antinociception in mice. Eur J Pharmacol 2023:175870. [PMID: 37353189 DOI: 10.1016/j.ejphar.2023.175870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Chronic pain is a common public health problem and remains an unmet medical need. Currently available analgesics usually have limited efficacy for the treatment of chronic pain, including neuropathic pain and persistent inflammatory pain, or they are accompanied by many adverse side effects. The voltage-gated calcium channel blocker (pregabalin) and potassium channel openers (flupirtine and retigabine) have been widely used for the management of chronic pain, but their effectiveness in combination is unclear. In this research, we evaluated the antinociceptive effects of pregabalin in combination with flupirtine or retigabine in carrageenan-induced inflammatory pain and paclitaxel-induced peripheral neuropathy in mice using the von Frey test. Isobolographic analysis indicated that pregabalin exerted synergistic antinociceptive effects when combined with flupirtine or retigabine in neuropathic and inflammatory pain models. Furthermore, the antinociceptive effects of pregabalin, flupirtine/retigabine, and their combinations were significantly attenuated by the Kv7 channel blocker XE991. The favored dose ratio between pregabalin and flupirtine/retigabine in combinations was also investigated. Finally, we evaluated the motor coordination of their combinations using the rotarod test, and the outcomes underpinned their safety. Collectively, our results support the potential use of pregabalin in combination with flupirtine or retigabine to alleviate chronic pain.
Collapse
Affiliation(s)
- Chao-Nan Huang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yan-Ming Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xin-Yi Xiao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hui-Ling Zhou
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jin Zhu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hui-Min Qin
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xue Jiang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zongzheng Li
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Tao Zhuang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Gui-Sen Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
8
|
Chen Y, Xiao X, Huang C, Zhu J, Zhou H, Qin H, Bao Y, Zhuang T, Zhang G. Flupirtine and antihistamines exert synergistic anti-nociceptive effects in mice. Psychopharmacology (Berl) 2023; 240:881-897. [PMID: 36752814 DOI: 10.1007/s00213-023-06329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023]
Abstract
RATIONALE Drug combinations are commonly used in pain management, which can produce potent analgesic effects with reduced dosage and adverse effects. OBJECTIVE This study was designed to evaluate the anti-nociceptive effects and adverse effects of new combinations of flupirtine (a Kv7 potassium channel opener) and antihistamines (promethazine, fexofenadine) on acute and chronic pain in mice, and the possible mechanisms behind the synergistic analgesic effects were preliminarily investigated. METHODS In acetic acid writhing test, carrageenan-induced inflammatory pain model, and paclitaxel-induced neuropathic pain model, the interaction indexes (γ) between flupirtine and antihistamines were determined by isobolographic analysis. Furthermore, the Kv7 channel blocker XE991 was used to determine whether the effects of single agents and drug combinations on paclitaxel- and carrageenan-induced mechanical allodynia were mediated by Kv7 channels. Finally, hepatotoxicity markers, liver histopathology, and the rotarod test were used to investigate the adverse effects of drugs in combination doses. RESULTS The interaction indexes of flupirtine-promethazine and flupirtine-fexofenadine in all the above three pain models were lower than 1. The analgesic effects of flupirtine (13 mg/kg), promethazine (5 mg/kg), fexofenadine (20 mg/kg), and their combinations were antagonized significantly by XE991 (3 mg/kg). And the adverse effects of flupirtine and antihistamines in combination doses were not significantly different from the vehicle group. CONCLUSIONS Flupirtine and antihistamines produced synergistic analgesic effects in all the above pain models. The analgesic effects of antihistamines were partially mediated by Kv7/M channels, and the activation of Kv7/M channels may be partly responsible for the synergistic analgesic effects between flupirtine and antihistamines.
Collapse
Affiliation(s)
- Yanming Chen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinyi Xiao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Chaonan Huang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jin Zhu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Huiling Zhou
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Huimin Qin
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yu Bao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Tao Zhuang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China. .,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Guisen Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China. .,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
9
|
Resino-Ruiz D, Gonzalez-Madariaga Y, Nieto L, Linares YM, León JOG, Martín AV, Díaz AV, Torrens F, Castillo-Garit JA. Anti-inflammatory Activity: In silico and In vivo of Sapogenins Present in Agave brittoniana subsp. brachypus (Trel.). Antiinflamm Antiallergy Agents Med Chem 2023; 22:42-48. [PMID: 37114792 DOI: 10.2174/1871523022666230419103027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Agave brittoniana subsp. brachypus is an endemic plant of Cuba, which contains different steroidal sapogenins with anti-inflammatory effects. This work aims to develop computational models which allow the identification of new chemical compounds with potential anti-inflammatory activity. METHODS The in vivo anti-inflammatory activity was evaluated in two rat models: carrageenaninduced paw edema and cotton pellet-induced granuloma. In each study, we used 30 Sprague Dawley male rats divided into five groups containing six animals. The products isolated and administrated were fraction rich in yuccagenin and sapogenins crude. RESULTS The obtained model, based on a classification tree, showed an accuracy value of 86.97% for the training set. Seven compounds (saponins and sapogenins) were identified as potential antiinflammatory agents in the virtual screening. According to in vivo studies, the yuccagenin-rich fraction was the greater inhibitor of the evaluated product from Agave. CONCLUSION The evaluated metabolites of the Agave brittoniana subsp. Brachypus showed an interesting anti-inflammatory effect.
Collapse
Affiliation(s)
- Dayana Resino-Ruiz
- Unidad de Toxicología Experimental, Universidad de Ciencias Médicas de Villa Clara, Santa Clara, 50200, Villa Clara, Cuba
| | - Yisel Gonzalez-Madariaga
- Unidad de Toxicología Experimental, Universidad de Ciencias Médicas de Villa Clara, Santa Clara, 50200, Villa Clara, Cuba
| | - Leisy Nieto
- Departamento de Farmacia, Facultad de Química-Farmacia, Universidad Central "Marta Abreu" de Las Villas, Santa Clara, 54830, Villa Clara, Cuba
| | - Yilka Mena Linares
- Unidad de Toxicología Experimental, Universidad de Ciencias Médicas de Villa Clara, Santa Clara, 50200, Villa Clara, Cuba
| | - Jose Orestes Guerra León
- Departamento de Química, Facultad de Química-Farmacia, Universidad Central "Marta Abreu" de Las Villas, Santa Clara, 54830, Villa Clara, Cuba
| | - Arlena Vázquez Martín
- Departamento de Química, Facultad de Química-Farmacia, Universidad Central "Marta Abreu" de Las Villas, Santa Clara, 54830, Villa Clara, Cuba
| | - Arianna Valido Díaz
- Unidad de Toxicología Experimental, Universidad de Ciencias Médicas de Villa Clara, Santa Clara, 50200, Villa Clara, Cuba
| | - Francisco Torrens
- Institut Universitari de Ciència Molecular, Universitat de València, Edifici d'Instituts de Paterna, P.O. Box 22085, E-46071, València, Spain
| | - Juan A Castillo-Garit
- Unidad de Toxicología Experimental, Universidad de Ciencias Médicas de Villa Clara, Santa Clara, 50200, Villa Clara, Cuba
- Institut Universitari de Ciència Molecular, Universitat de València, Edifici d'Instituts de Paterna, P.O. Box 22085, E-46071, València, Spain
| |
Collapse
|
10
|
Zhuang T, Xiong J, Ren X, Liang L, Qi Z, Zhang S, Du W, Chen Y, Liu X, Zhang G. Benzylaminofentanyl derivates: Discovery of bifunctional μ opioid and σ1 receptor ligands as novel analgesics with reduced adverse effects. Eur J Med Chem 2022; 241:114649. [DOI: 10.1016/j.ejmech.2022.114649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/04/2022]
|