1
|
Nedaeinia R, Dianat-Moghadam H, Movahednasab M, Khosroabadi Z, Keshavarz M, Amoozgar Z, Salehi R. Therapeutic and prognostic values of ferroptosis signature in glioblastoma. Int Immunopharmacol 2025; 155:114597. [PMID: 40239336 DOI: 10.1016/j.intimp.2025.114597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/15/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025]
Abstract
Ferroptosis is a regulated cell death process that results in decreased tumor growth and aggressiveness when targeted in various cancer cells. Studying the impact of ferroptosis in glioblastoma (GBM) will provide important knowledge about tumor biology and potential treatment strategies. The high metabolic activity resulting in ROS production, iron content and active lipid metabolism of glioblastoma cells make them particularly susceptible to ferroptosis. Single-cell RNA sequencing reveals the molecular signature of GBM and its tumor microenvironment, introducing ferroptosis-related biomarkers pathways and drug resistance mechanisms to enhance treatment outcomes for GBM patients. The relationship between ferroptosis and the immune landscape in GBM is complex and can have either positive or negative effects. These effects can be identified through single-cell RNA sequencing to develop targeted chemo-, radio- and immuno- therapies against glioma stem cells and tumor-supportive immune cells. Additionally, the implication of oncolytic virotherapy in combination with ferroptosis induction can lead to improved treatment of GBM in a clinical setting.
Collapse
Affiliation(s)
- Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Dianat-Moghadam
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maedeh Movahednasab
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Khosroabadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rasoul Salehi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Li W, Ji T, Ye J, Xiong S, Si Y, Sun X, Li F, Dai Z. Ferroptosis enhances the therapeutic potential of oncolytic adenoviruses KD01 against cancer. Cancer Gene Ther 2025; 32:403-417. [PMID: 40033102 PMCID: PMC11976264 DOI: 10.1038/s41417-025-00882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Oncolytic virotherapy has emerged as a promising strategy for cancer treatment by selectively targeting and lysing tumor cells. However, its efficacy is often limited in certain tumor types due to multiple factors. This study explores the combination of oncolytic adenoviruses with Erastin, a potent ferroptosis inducer, to enhance antitumor efficacy in oncolytic virus-insensitive cancer cell lines. In vitro experiments demonstrated that Erastin significantly increased the cytotoxicity of oncolytic virotherapy, leading to greater inhibition of cell proliferation and elevated rates of cell death compared to monotherapies. The combination treatment further promoted ferroptosis, as evidenced by increased reactive oxygen species (ROS) levels, enhanced lipid peroxidation, and disrupted redox homeostasis. RNA sequencing identified the downregulation of Dickkopf-1 (DKK1) as a key mediator of the enhanced ferroptotic effect. Restoring the expression of DKK1 partially mitigated the cytotoxic effects of the combination therapy, highlighting its crucial role in mediating the enhanced ferroptosis-induced oncolytic virotherapy efficacy. In vivo studies further validated these findings, demonstrating that the combined treatment significantly reduced tumor growth without inducing notable toxicity. This novel therapeutic approach has great potential to enhance the efficacy of oncolytic virotherapy in cancers resistant to oncolytic viruses by inducing ferroptosis. Further investigation in clinically relevant models is warranted to fully elucidate the underlying mechanisms and to optimize this combination strategy for potential clinical applications.
Collapse
Affiliation(s)
- Wenhuan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Teng Ji
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Jiaqi Ye
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Shengfeng Xiong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Yao Si
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiaohui Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Fei Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| | - Zhoutong Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| |
Collapse
|
3
|
Chen F, Lang L, Yang J, Yang F, Tang S, Fu Z, Saba NF, Luo M, Teng Y. SMAC-armed oncolytic virotherapy enhances the anticancer activity of PD1 blockade by modulating PANoptosis. Biomark Res 2025; 13:8. [PMID: 39789615 PMCID: PMC11721257 DOI: 10.1186/s40364-025-00726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Oncolytic viruses (OVs) are increasingly recognized as promising tools for cancer therapy, as they selectively infect and destroy tumor cells while leaving healthy cells unharmed. Despite considerable progress, the limited therapeutic efficacy of OV-based virotherapy continues to be a significant challenge in cancer treatment. METHODS The SMAC/DIABLO gene was inserted into the genome of vesicular stomatitis virus (VSV) to generate VSV-S. Head and neck squamous cell carcinoma (HNSCC) cell lines and orthotopic mouse models were employed for research. Morphological changes were observed using both light microscopy and transmission electron microscopy. Molecular alterations were analyzed through Western blotting and ELISA kits. The tumor secretome was characterized using a combination of biotinylation and LC-MS analysis. Immune cell changes were evaluated by flow cytometry and immunohistochemistry. RESULTS Compared to its parental virus, VSV-S not only increases apoptosis by overexpressing SMAC during VSV infection but also triggers elevated levels of PANoptosis (pyroptosis, apoptosis, and necroptosis) in HNSCC cells via activation of caspase-1/gasdermin D (GSDMD) signaling. As a result, VSV-S-induced PANoptosis promotes CD8+ T cell tumor infiltration and enhances their cytotoxic capacity, eventually potentiating T cell-mediated antitumor immunity. Moreover, VSV-S reduces PDL1 levels in HNSCC cells and, in combination with PD1 blockade, produces a more potent antitumor effect than either therapy alone. CONCLUSIONS Our findings demonstrate that the combination of VSV-S and PD1 blockade offers a synergistic therapeutic strategy for HNSCC, supporting the advancement of VSV-based virotherapy as a promising strategy to improve outcomes for HNSCC patients.
Collapse
Affiliation(s)
- Fanghui Chen
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Liwei Lang
- Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jianqiang Yang
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Fan Yang
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Sijia Tang
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Zhenzhen Fu
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Ming Luo
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
Cao PHA, Dominic A, Lujan FE, Senthilkumar S, Bhattacharya PK, Frigo DE, Subramani E. Unlocking ferroptosis in prostate cancer - the road to novel therapies and imaging markers. Nat Rev Urol 2024; 21:615-637. [PMID: 38627553 DOI: 10.1038/s41585-024-00869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
Ferroptosis is a distinct form of regulated cell death that is predominantly driven by the build-up of intracellular iron and lipid peroxides. Ferroptosis suppression is widely accepted to contribute to the pathogenesis of several tumours including prostate cancer. Results from some studies reported that prostate cancer cells can be highly susceptible to ferroptosis inducers, providing potential for an interesting new avenue of therapeutic intervention for advanced prostate cancer. In this Perspective, we describe novel molecular underpinnings and metabolic drivers of ferroptosis, analyse the functions and mechanisms of ferroptosis in tumours, and highlight prostate cancer-specific susceptibilities to ferroptosis by connecting ferroptosis pathways to the distinctive metabolic reprogramming of prostate cancer cells. Leveraging these novel mechanistic insights could provide innovative therapeutic opportunities in which ferroptosis induction augments the efficacy of currently available prostate cancer treatment regimens, pending the elimination of major bottlenecks for the clinical translation of these treatment combinations, such as the development of clinical-grade inhibitors of the anti-ferroptotic enzymes as well as non-invasive biomarkers of ferroptosis. These biomarkers could be exploited for diagnostic imaging and treatment decision-making.
Collapse
Affiliation(s)
- Pham Hong Anh Cao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Abishai Dominic
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fabiola Ester Lujan
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Sanjanaa Senthilkumar
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Nuclear Receptors and Cell Signalling, University of Houston, Houston, TX, USA.
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| | - Elavarasan Subramani
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Hua X, Xuan S, Tang Y, You S, Zhao S, Qiu Y, Li Y, Li Y, Su Y, Qu P. Progression of oncolytic virus in liver cancer treatment. Front Oncol 2024; 14:1446085. [PMID: 39391253 PMCID: PMC11464341 DOI: 10.3389/fonc.2024.1446085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
The liver plays a crucrial role in detoxification, metabolism, and nutrient storage. Because liver cancer ranks among the top three leading causes of death globally, there is an urgent need for developing treatment strategies for liver cancer. Although traditional approaches such as radiation, chemotherapy, surgical removal, and transplantation are widely practiced, the number of patients with liver cancer continues to increase rapidly each year. Some novel therapeutics for liver cancer have been studied for many years. In the past decade, oncolytic therapy has emerged, in which viruses selectively infect and destroy cancer cells while sparing normal cells. However, oncolytic virotherapy for liver cancer remains relatively obscure due to the aggressive nature of the disease and the limited effectiveness of treatment. To keep pace with the latest developments in oncolytic tumor therapy for liver cancer, this review summarizes basic science studies and clinical trials conducted within 5 years, focusing on the efficacy and safety profiles of the five most commonly used oncolytic viruses: herpes simplex virus, adenovirus, influenza virus, vaccinia virus, and coxsackievirus.
Collapse
Affiliation(s)
- Xuesi Hua
- School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Siyu Xuan
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yangyang Tang
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shilin You
- Department of Pharmacy, Changchun University of Traditional Chinese Medicine Innovation Practice Center, Changchun, Jilin, China
| | - Shang Zhao
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ye Qiu
- Department of Pharmacy, Changchun University of Traditional Chinese Medicine Innovation Practice Center, Changchun, Jilin, China
| | - Yinqing Li
- Department of Pharmacy, Changchun University of Traditional Chinese Medicine Innovation Practice Center, Changchun, Jilin, China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Yanping Su
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Peng Qu
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Pharmacy, Changchun University of Traditional Chinese Medicine Innovation Practice Center, Changchun, Jilin, China
- Department of Pharmacy, Zhejiang University of Technology Fuyang Yinhu Institute of Innovation and Entrepreneurship, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Dong Z, Dai B, Wu R, Fang K, Sui C, Geng L, Yang J. Expression Characteristics, Immune Signature, and Prognostic Value of the SOCS Family Identified by Multiomics Integrative Analysis in Liver Cancer. Cancer Rep (Hoboken) 2024; 7:e2161. [PMID: 39307915 PMCID: PMC11416904 DOI: 10.1002/cnr2.2161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a prevalent malignancy with a high mortality rate worldwide. Suppressor of cytokine signaling (SOCS) family members play important roles in the proliferation, metabolism, and immunity of HCC cells by regulating cytokines and growth factors. However, it remains uncertain whether the level of SOCS family members can affect the prognosis of HCC patients. AIMS This study aimed to comprehensively assess the role and mechanisms of SOCS family members in the development of HCC and to guide clinical selection. METHODS We investigated the expression levels of SOCS family genes in HCC patients and their associations with various clinicopathological characteristics. We also utilized a public database to analyze the changes in the expression, potential functions, transcription factors, and immune invasion of SOCS family members. Additionally, we examined the prognostic value of the SOC family for HCC and its correlation with the SOC family and ferroptosis-related genes. RESULTS This study revealed that the expression of SOCS2-7, and CISH was downregulated in HCC. The SOCS4, SOCS5, and SOCS7 genes were associated with the clinicopathological features of HCC patients. SOCS family genes are mainly related to the PIK3R3, GHR, and TNS4 pathways. Additionally, this study revealed that STAT3, PPAR-gamma 2, and IRF-2 are important transcription factors that regulate SOCS family members. The expression levels of SOCS family members are closely related to immune infiltration in liver cancer. The study also indicated that SOCS2 and SOCS4 are risk-related genes for predicting the prognosis of patients with liver cancer. Finally, this study suggested that the SOCS2 gene may be involved in the development and progression of HCC. CONCLUSION Our study enhances the current understanding of SOCS gene function in liver cancer and can help clinicians select appropriate drugs and predict the prognosis of HCC patients.
Collapse
Affiliation(s)
- Zhitao Dong
- Department of Special TreatmentShanghai Eastern Hepatobiliary Surgery HospitalShanghaiChina
| | - Binghua Dai
- Department of Special TreatmentShanghai Eastern Hepatobiliary Surgery HospitalShanghaiChina
| | - Rui Wu
- Department of Special TreatmentShanghai Eastern Hepatobiliary Surgery HospitalShanghaiChina
| | - Kunpeng Fang
- Department of Special TreatmentShanghai Eastern Hepatobiliary Surgery HospitalShanghaiChina
| | - Chengjun Sui
- Department of Special TreatmentShanghai Eastern Hepatobiliary Surgery HospitalShanghaiChina
| | - Li Geng
- Department of Special TreatmentShanghai Eastern Hepatobiliary Surgery HospitalShanghaiChina
| | - Jiamei Yang
- Department of Special TreatmentShanghai Eastern Hepatobiliary Surgery HospitalShanghaiChina
| |
Collapse
|
7
|
Guo K, Lu M, Bi J, Yao T, Gao J, Ren F, Zhu L. Ferroptosis: mechanism, immunotherapy and role in ovarian cancer. Front Immunol 2024; 15:1410018. [PMID: 39192972 PMCID: PMC11347334 DOI: 10.3389/fimmu.2024.1410018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Ovarian cancer is currently the second most common malignant tumor among gynecological cancers worldwide, primarily due to challenges in early diagnosis, high recurrence rates, and resistance to existing treatments. Current therapeutic options are inadequate for addressing the needs of ovarian cancer patients. Ferroptosis, a novel form of regulated cell death with demonstrated tumor-suppressive properties, has gained increasing attention in ovarian malignancy research. A growing body of evidence suggests that ferroptosis plays a significant role in the onset, progression, and incidence of ovarian cancer. Additionally, it has been found that immunotherapy, an emerging frontier in tumor treatment, synergizes with ferroptosis in the context of ovarian cancer. Consequently, ferroptosis is likely to become a critical target in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ke Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Miao Lu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianlei Bi
- Department of Obstetrics and Gynecology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tianyu Yao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jian Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fang Ren
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Le J, Meng Y, Wang Y, Li D, Zeng F, Xiong Y, Chen X, Deng G. Molecular and therapeutic landscape of ferroptosis in skin diseases. Chin Med J (Engl) 2024; 137:1777-1789. [PMID: 38973265 DOI: 10.1097/cm9.0000000000003164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Indexed: 07/09/2024] Open
Abstract
ABSTRACT Regulated cell death (RCD) is a critical physiological process essential in maintaining skin homeostasis. Among the various forms of RCD, ferroptosis stands out due to its distinct features of iron accumulation, lipid peroxidation, and involvement of various inhibitory antioxidant systems. In recent years, an expanding body of research has solidly linked ferroptosis to the emergence of skin disorders. Therefore, understanding the mechanisms underlying ferroptosis in skin diseases is crucial for advancing therapy and prevention strategies. This review commences with a succinct elucidation of the mechanisms that underpin ferroptosis, embarks on a thorough exploration of ferroptosis's role across a spectrum of skin conditions, encompassing melanoma, psoriasis, systemic lupus erythematosus (SLE), vitiligo, and dermatological ailments precipitated by ultraviolet (UV) exposure, and scrutinizes the potential therapeutic benefits of pharmacological interventions aimed at modulating ferroptosis for the amelioration of skin diseases.
Collapse
Affiliation(s)
- Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Ying Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yixiao Xiong
- Department of Dermatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan 410008, China
- Furong Laboratory, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| |
Collapse
|
9
|
Zhou H, Cheng Y, Huang Q, Xiao J. Regulation of ferroptosis by nanotechnology for enhanced cancer immunotherapy. Expert Opin Drug Deliv 2024; 21:921-943. [PMID: 39014916 DOI: 10.1080/17425247.2024.2379937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION This review explores the innovative intersection of ferroptosis, a form of iron-dependent cell death, with cancer immunotherapy. Traditional cancer treatments face limitations in efficacy and specificity. Ferroptosis as a new paradigm in cancer biology, targets metabolic peculiarities of cancer cells and may potentially overcome such limitations, enhancing immunotherapy. AREA COVERED This review centers on the regulation of ferroptosis by nanotechnology to augment immunotherapy. It explores how nanoparticle-modulated ferroptotic cancer cells impact the TME and immune responses. The dual role of nanoparticles in modulating immune response through ferroptosis are also discussed. Additionally, it investigates how nanoparticles can be integrated with various immunotherapeutic strategies, to optimize ferroptosis induction and cancer treatment efficacy. The literature search was conducted using PubMed and Google Scholar, covering articles published up to March 2024. EXPERT OPINION The manuscript underscores the promising yet intricate landscape of ferroptosis in immunotherapy. It emphasizes the need for a nuanced understanding of ferroptosis' impact on immune cells and the TME to develop more effective cancer treatments, highlighting the potential of nanoparticles in enhancing the efficacy of ferroptosis and immunotherapy. It calls for deeper exploration into the molecular mechanisms and clinical potential of ferroptosis to fully harness its therapeutic benefits in immunotherapy.
Collapse
Affiliation(s)
- Haohan Zhou
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Quan Huang
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| |
Collapse
|
10
|
Ye J, Chen L, Waltermire J, Zhao J, Ren J, Guo Z, Bartlett DL, Liu Z. Intratumoral Delivery of Interleukin 9 via Oncolytic Vaccinia Virus Elicits Potent Antitumor Effects in Tumor Models. Cancers (Basel) 2024; 16:1021. [PMID: 38473379 DOI: 10.3390/cancers16051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The success of cancer immunotherapy is largely associated with immunologically hot tumors. Approaches that promote the infiltration of immune cells into tumor beds are urgently needed to transform cold tumors into hot tumors. Oncolytic viruses can transform the tumor microenvironment (TME), resulting in immunologically hot tumors. Cytokines are good candidates for arming oncolytic viruses to enhance their function in this transformation. Here, we used the oncolytic vaccinia virus (oVV) to deliver interleukin-9 (IL-9) into the tumor bed and explored its antitumor effects in colon and lung tumor models. Our data show that IL-9 prolongs viral persistence, which is probably mediated by the up-regulation of IL-10. The vvDD-IL-9 treatment elevated the expression of Th1 chemokines and antitumor factors such as IFN-γ, granzyme B, and perforin. IL-9 expression increased the percentages of CD4+ and CD8+ T cells in the TME and decreased the percentage of oVV-induced immune suppressive myeloid-derived suppressor cells (MDSC), leading to potent antitumor effects compared with parental virus treatment. The vvDD-IL-9 treatment also increased the percentage of regulatory T cells (Tregs) in the TME and elevated the expression of immune checkpoint molecules such as PD-1, PD-L1, and CTLA-4, but not GITR. The combination therapy of vvDD-IL-9 and the anti-CTLA-4 antibody, but not the anti-GITR antibody, induced systemic tumor-specific antitumor immunity and significantly extended the overall survival of mice, indicating a potential translation of the IL-9-expressing oncolytic virus into a clinical trial to enhance the antitumor effects elicited by an immune checkpoint blockade for cancer immunotherapy.
Collapse
Affiliation(s)
- Junjie Ye
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19104, USA
- Department of Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lingjuan Chen
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19104, USA
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Julia Waltermire
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
| | - Jinshun Zhao
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zongsheng Guo
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - David L Bartlett
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | - Zuqiang Liu
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Shi TM, Chen XF, Ti H. Ferroptosis-Based Therapeutic Strategies toward Precision Medicine for Cancer. J Med Chem 2024; 67:2238-2263. [PMID: 38306267 DOI: 10.1021/acs.jmedchem.3c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Ferroptosis is a type of iron-dependent programmed cell death characterized by the dysregulation of iron metabolism and the accumulation of lipid peroxides. This nonapoptotic mode of cell death is implicated in various physiological and pathological processes. Recent findings have underscored its potential as an innovative strategy for cancer treatment, particularly against recalcitrant malignancies that are resistant to conventional therapies. This article focuses on ferroptosis-based therapeutic strategies for precision cancer treatment, covering the molecular mechanisms of ferroptosis, four major types of ferroptosis inducers and their inhibitory effects on diverse carcinomas, the detection of ferroptosis by fluorescent probes, and their implementation in image-guided therapy. These state-of-the-art tactics have manifested enhanced selectivity and efficacy against malignant carcinomas. Given that the administration of ferroptosis in cancer therapy is still at a burgeoning stage, some major challenges and future perspectives are discussed for the clinical translation of ferroptosis into precision cancer treatment.
Collapse
Affiliation(s)
- Tong-Mei Shi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, China National Analytical Center, Guangzhou, Guangzhou 510070, P. R. China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| |
Collapse
|
12
|
Zhai X, Lin Y, Zhu L, Wang Y, Zhang J, Liu J, Li L, Lu X. Ferroptosis in cancer immunity and immunotherapy: Multifaceted interplay and clinical implications. Cytokine Growth Factor Rev 2024; 75:101-109. [PMID: 37658030 DOI: 10.1016/j.cytogfr.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Ferroptosis is a type of cell death characterized by iron-dependent phospholipid peroxidation and reactive oxygen species overproduction. Ferroptosis induces immunogenic cell death and elicits anti-tumor immune responses, playing an important role in cancer immunotherapy. Ferroptosis suppression in cancer cells impairs its immunotherapeutic efficacy. To overcome this issue, ferroptosis inducers (FINs) have been combined with other cancer therapies to create an anti-tumor immune microenvironment. However, the ferroptosis-based crosstalk between immune and tumor cells is complex because oxidative products released by ferroptotic tumor cells impair the functions of anti-tumor immune cells, resulting in immunotherapeutic resistance. In the present article, we have reviewed ferroptosis in tumor and immune cells and summarized the crosstalk between ferroptotic tumor cells and the immune microenvironment. Based on the existing literature, we have further discussed future perspectives on opportunities for combining ferroptosis-targeted therapies with cancer immunotherapies.
Collapse
Affiliation(s)
- Xiaoqian Zhai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiyun Lin
- Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqing Wang
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Jiabi Zhang
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Jiewei Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Lu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Da Silva J, Bienassis C, Schmitt P, Berjaud C, Guedj M, Paris S. Radiotherapy-activated NBTXR3 nanoparticles promote ferroptosis through induction of lysosomal membrane permeabilization. J Exp Clin Cancer Res 2024; 43:11. [PMID: 38173001 PMCID: PMC10762921 DOI: 10.1186/s13046-023-02938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE Radiotherapy-activated NBTXR3 (NBTXR3 + RT) has demonstrated superior efficacy in cancer cell destruction and tumor growth control, compared to radiotherapy (RT), in preclinical and clinical settings. Previous studies highlighted the immunomodulatory properties of NBTXR3 + RT, such as modification of tumor cell immunogenicity/adjuvanticity, producing an effective local tumor control and abscopal effect, related to an enhanced antitumor immune response. Furthermore, NBTXR3 + RT has shown potential in restoring anti-PD1 efficacy in a refractory tumor model. However, the early events leading to these results, such as NBTXR3 endocytosis, intracellular trafficking and primary biological responses induced by NBTXR3 + RT remain poorly understood. METHODS We analyzed by transmission electron microscopy endocytosis and intracellular localization of NBTXR3 nanoparticles after endocytosis in various cell lines, in vitro and in vivo. A kinetic of NBTXR3 endocytosis and its impact on lysosomes was conducted using LysoTracker staining, and a RNAseq analysis was performed. We investigated the ability of NBTXR3 + RT to induce lysosomal membrane permeabilization (LMP) and ferroptosis by analyzing lipid peroxidation. Additionally, we evaluated the recapture by cancer cells of NBTXR3 released from dead cells. RESULTS NBTXR3 nanoparticles were rapidly internalized by cells mainly through macropinocytosis and in a less extend by clathrin-dependent endocytosis. NBTXR3-containing endosomes were then fused with lysosomes. The day following NBTXR3 addition, we measured a significant increase in LysoTracker lysosome labeling intensity, in vitro as in vivo. Following RT, a significant lysosomal membrane permeabilization (LMP) was measured exclusively in cells treated with NBTXR3 + RT, while RT had no effect. The day post-irradiation, a significant increase in lipid peroxidation, a biomarker of ferroptosis, was measured with NBTXR3 + RT compared to RT. Moreover, we demonstrated that NBTXR3 nanoparticles released from dead cells can be recaptured by cancer cells. CONCLUSIONS Our findings provide novel insights into the early and specific biological effects induced by NBTXR3 + RT, especially LMP, not induced by RT in our models. The subsequent significant increase in lipid peroxidation partially explains the enhanced cancer cell killing capacity of NBTXR3 + RT compared to RT, potentially by promoting ferroptosis. This study improves our understanding of the cellular mechanisms underlying NBTXR3 + RT and highlights its potential as an agnostic therapeutic strategy for solid cancers treatment.
Collapse
|
14
|
Zhang J, Xiao Y, Zhang J, Yang Y, Zhang L, Liang F. Recent advances of engineered oncolytic viruses-based combination therapy for liver cancer. J Transl Med 2024; 22:3. [PMID: 38167076 PMCID: PMC10763442 DOI: 10.1186/s12967-023-04817-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Liver cancer is a major malignant tumor, which seriously threatens human health and increases the economic burden on patients. At present, gene therapy has been comprehensively studied as an excellent therapeutic measure in liver cancer treatment. Oncolytic virus (OV) is a kind of virus that can specifically infect and kill tumor cells. After being modified by genetic engineering, the specificity of OV infection to tumor cells is increased, and its influence on normal cells is reduced. To date, OV has shown its effectiveness and safety in experimental and clinical studies on a variety of tumors. Thus, this review primarily introduces the current status of different genetically engineered OVs used in gene therapy for liver cancer, focuses on the application of OVs and different target genes for current liver cancer therapy, and identifies the problems encountered in OVs-based combination therapy and the corresponding solutions, which will provide new insights into the treatment of liver cancer.
Collapse
Affiliation(s)
- Junhe Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China.
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China.
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Yunxi Xiao
- Institutes of Health Central Plains, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
| | - Jie Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yun Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Liao Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
| | - Fan Liang
- Institutes of Health Central Plains, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan Province, China
| |
Collapse
|
15
|
Khorsandi K, Esfahani H, Ghamsari SK, Lakhshehei P. Targeting ferroptosis in melanoma: cancer therapeutics. Cell Commun Signal 2023; 21:337. [PMID: 37996827 PMCID: PMC10666330 DOI: 10.1186/s12964-023-01296-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/25/2023] [Indexed: 11/25/2023] Open
Abstract
Melanoma is an aggressive kind of skin cancer; its rate has risen rapidly over the past few decades. Melanoma reports for only about 1% of skin cancers but leads to a high majority of skin cancer deaths. Thus, new useful therapeutic approaches are currently required, to state effective treatments to consistently enhance the overall survival rate of melanoma patients. Ferroptosis is a recently identified cell death process, which is different from autophagy, apoptosis, necrosis, and pyroptosis in terms of biochemistry, genetics, and morphology which plays an important role in cancer treatment. Ferroptosis happens mostly by accumulating iron and lipid peroxides in the cell. Recently, studies have revealed that ferroptosis has a key role in the tumor's progression. Especially, inducing ferroptosis in cells can inhibit the tumor cells' growth, leading to back warding tumorigenesis. Here, we outline the ferroptosis characteristics from its basic role in melanoma cancer and mention its possible applications in melanoma cancer treatment. Video Abstract.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamics, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
| | - HomaSadat Esfahani
- Department of Photodynamics, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Parisa Lakhshehei
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
Benoit A, Vogin G, Duhem C, Berchem G, Janji B. Lighting Up the Fire in the Microenvironment of Cold Tumors: A Major Challenge to Improve Cancer Immunotherapy. Cells 2023; 12:1787. [PMID: 37443821 PMCID: PMC10341162 DOI: 10.3390/cells12131787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Immunotherapy includes immune checkpoint inhibitors (ICI) such as antibodies targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) or the programmed cell death protein/programmed death ligand 1 (PD-1/PD-L1) axis. Experimental and clinical evidence show that immunotherapy based on immune checkpoint inhibitors (ICI) provides long-term survival benefits to cancer patients in whom other conventional therapies have failed. However, only a minority of patients show high clinical benefits via the use of ICI alone. One of the major factors limiting the clinical benefits to ICI can be attributed to the lack of immune cell infiltration within the tumor microenvironment. Such tumors are classified as "cold/warm" or an immune "desert"; those displaying significant infiltration are considered "hot" or inflamed. This review will provide a brief summary of different tumor properties contributing to the establishment of cold tumors and describe major strategies that could reprogram non-inflamed cold tumors into inflamed hot tumors. More particularly, we will describe how targeting hypoxia can induce metabolic reprogramming that results in improving and extending the benefit of ICI.
Collapse
Affiliation(s)
- Alice Benoit
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg; (A.B.); (G.B.)
| | - Guillaume Vogin
- Centre National de Radiothérapie François Baclesse, L-4005 Esch-sur-Alzette, Luxembourg;
- Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine—UMR 7365, 54505 Vandoeuvre-lès-Nancy, France
| | - Caroline Duhem
- Department of Hemato-Oncology, Centre Hospitalier du Luxembourg, L-1210 Luxembourg, Luxembourg;
| | - Guy Berchem
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg; (A.B.); (G.B.)
- Department of Hemato-Oncology, Centre Hospitalier du Luxembourg, L-1210 Luxembourg, Luxembourg;
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Bassam Janji
- Tumor Immunotherapy and Microenvironment (TIME) Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210 Luxembourg, Luxembourg; (A.B.); (G.B.)
| |
Collapse
|
17
|
Dong L, Vargas CPD, Tian X, Chu X, Yin C, Wong A, Yang Y. Harnessing the Potential of Non-Apoptotic Cell Death Processes in the Treatment of Drug-Resistant Melanoma. Int J Mol Sci 2023; 24:10376. [PMID: 37373523 DOI: 10.3390/ijms241210376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Melanoma is a highly malignant skin cancer that is known for its resistance to treatments. In recent years, there has been significant progress in the study of non-apoptotic cell death, such as pyroptosis, ferroptosis, necroptosis, and cuproptosis. This review provides an overview of the mechanisms and signaling pathways involved in non-apoptotic cell death in melanoma. This article explores the interplay between various forms of cell death, including pyroptosis, necroptosis, ferroptosis, and cuproptosis, as well as apoptosis and autophagy. Importantly, we discuss how these non-apoptotic cell deaths could be targeted as a promising therapeutic strategy for the treatment of drug-resistant melanoma. This review provides a comprehensive overview of non-apoptotic processes and gathers recent experimental evidence that will guide future research and eventually the creation of treatment strategies to combat drug resistance in melanoma.
Collapse
Affiliation(s)
- Linyinxue Dong
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| | | | - Xuechen Tian
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| | - Xiayu Chu
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| | - Chenqi Yin
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| | - Aloysius Wong
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| | - Yixin Yang
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou 325060, China
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China
- School of Natural Sciences, Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ 07083, USA
| |
Collapse
|
18
|
Zhu L, Lei Y, Huang J, An Y, Ren Y, Chen L, Zhao H, Zheng C. Recent advances in oncolytic virus therapy for hepatocellular carcinoma. Front Oncol 2023; 13:1172292. [PMID: 37182136 PMCID: PMC10169724 DOI: 10.3389/fonc.2023.1172292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly refractory cancer and the fourth leading cause of cancer-related mortality worldwide. Despite the development of a detailed treatment strategy for HCC, the survival rate remains unsatisfactory. Oncolytic virus has been extensively researched as a new cancer therapeutic agent in the treatment of HCC. Researchers have designed a variety of recombinant viruses based on natural oncolytic diseases, which can increase the targeting of oncolytic viruses to HCC and their survival in tumors, as well as kill tumor cells and inhibit the growth of HCC through a variety of mechanisms. The overall efficacy of oncolytic virus therapy is known to be influenced by anti-tumor immunity, toxic killing effect and inhibition of tumor angiogenesis, etc. Therefore, a comprehensive review of the multiple oncolytic mechanisms of oncolytic viruses in HCC has been conducted. So far, a large number of relevant clinical trials are under way or have been completed, and some encouraging results have been obtained. Studies have shown that oncolytic virus combined with other HCC therapies may be a feasible method, including local therapy, chemotherapy, molecular targeted therapy and immunotherapy. In addition, different delivery routes for oncolytic viruses have been studied so far. These studies make oncolytic virus a new and attractive drug for the treatment of HCC.
Collapse
Affiliation(s)
- Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Lei
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yahang An
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yanqiao Ren
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huangxuan Zhao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Interventional Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Zhu Z, McGray AJR, Jiang W, Lu B, Kalinski P, Guo ZS. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol Cancer 2022; 21:196. [PMID: 36221123 PMCID: PMC9554963 DOI: 10.1186/s12943-022-01664-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Oncolytic viruses (OVs) represent a new class of multi-modal immunotherapies for cancer, with OV-elicited antitumor immunity being key to their overall therapeutic efficacy. Currently, the clinical effectiveness of OV as monotherapy remains limited, and thus investigators have been exploring various combinations with other anti-cancer agents and demonstrated improved therapeutic efficacy. As cancer cells have evolved to alter key signaling pathways for enhanced cell proliferation, cancer progression and metastasis, these cellular and molecular changes offer promising targets for rational cancer therapy design. In this regard, key molecules in relevant signaling pathways for cancer cells or/and immune cells, such as EGFR-KRAS (e.g., KRASG12C), PI3K-AKT-mTOR, ERK-MEK, JAK-STAT, p53, PD-1-PD-L1, and epigenetic, or immune pathways (e.g., histone deacetylases, cGAS-STING) are currently under investigation and have the potential to synergize with OV to modulate the immune milieu of the tumor microenvironment (TME), thereby improving and sustaining antitumor immunity. As many small molecule modulators of these signaling pathways have been developed and have shown strong therapeutic potential, here we review key findings related to both OV-mediated immunotherapy and the utility of small molecule modulators of signaling pathways in immuno-oncology. Then, we focus on discussion of the rationales and potential strategies for combining OV with selected modulators targeting key cellular signaling pathways in cancer or/and immune cells to modulate the TME and enhance antitumor immunity and therapeutic efficacy. Finally, we provide perspectives and viewpoints on the application of novel experimental systems and technologies that can propel this exciting branch of medicine into a bright future.
Collapse
Affiliation(s)
- Zhi Zhu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - A J Robert McGray
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Weijian Jiang
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA. .,Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|