1
|
Quiñones-Vico MI, Andrades-Amate M, Fernández-González A, Ubago-Rodríguez A, Moll K, Norrby-Teglund A, Svensson M, Gutiérrez-Fernández J, Arias-Santiago S. Antibiotic biocompatibility assay and anti-biofilm strategies for Pseudomonas aeruginosa infection in bioengineered artificial skin substitutes. J Antimicrob Chemother 2024; 79:3313-3322. [PMID: 39412231 DOI: 10.1093/jac/dkae365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 12/14/2024] Open
Abstract
OBJECTIVES Bioengineered artificial skin substitutes (BASS) are an advanced therapy for treating extensively burned patients. Pseudomonas aeruginosa (P. aeruginosa) infections represent a major challenge in these patients as formation of biofilms impede wound healing and perpetuate a chronic inflammatory state. Here we assessed antibiotics (alone or in combination) with respect to cytotoxicity, as well as antimicrobial efficacy in P. aeruginosa biofilm formed on infection of BASS. METHODS Cell viability, structure and functionality were evaluated using microscopy and trans-epidermal water loss analyses, respectively. BASS were established and infected for 24 h to allow P. aeruginosa biofilm formation, after which two antimicrobial approaches, treatment and prevention, were tested. In the latter, antibiotics were added to BASS before infection. The antimicrobial effect was determined using real-time calorimetry. RESULTS In dose-response experiments, 1.25 mg/mL amikacin, 0.02 mg/mL ciprofloxacin, 0.051 mg/mL colistin, 1 mg/mL meropenem and colistin in combination with either amikacin, ciprofloxacin and meropenem did not affect BASS' viability, structure and functionality. All antibiotics, except colistin, showed effective antimicrobial activity at these non-cytotoxic concentrations. For concentrations below the highest non-cytotoxic ones, successive treatments resulted in higher bacterial metabolic rates. Only the combinations managed to eradicate the infection with repeated treatments. With respect to prevention of infection, all antibiotics at the highest non-cytotoxic concentrations and the combinations were effective. This preventive capacity was maintained for at least 5 days. CONCLUSION The findings highlight the potential for developing BASS with antimicrobial properties that can prevent infections during wound healing in burn patients.
Collapse
Affiliation(s)
- María I Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Progress and Health Foundation, 41092 Sevilla, Spain
- Medicine Department, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Marta Andrades-Amate
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Progress and Health Foundation, 41092 Sevilla, Spain
| | - Ana Ubago-Rodríguez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Progress and Health Foundation, 41092 Sevilla, Spain
| | - Kirsten Moll
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mattias Svensson
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Progress and Health Foundation, 41092 Sevilla, Spain
- Medicine Department, School of Medicine, University of Granada, 18016 Granada, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| |
Collapse
|
2
|
Pazdrowski J, Gornowicz-Porowska J, Kaźmierska J, Krajka-Kuźniak V, Polanska A, Masternak M, Szewczyk M, Golusiński W, Danczak-Pazdrowska A. Radiation-induced skin injury in the head and neck region: pathogenesis, clinics, prevention, treatment considerations and proposal for management algorithm. Rep Pract Oncol Radiother 2024; 29:373-390. [PMID: 39144266 PMCID: PMC11321788 DOI: 10.5603/rpor.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/16/2024] [Indexed: 08/16/2024] Open
Abstract
Worldwide increase of head and neck cancers ranks these malignancies among top causes of cancer in human population. Radiation induced skin injury (RISI) is one of the major side effects of radiotherapy (RT). Skin of the neck is exposed to radiation due to necessity of therapeutic or prophylactic (elective) irradiation of neck lymph nodes and target organs, including the larynx and hypopharynx. The location of the neck exposes these regions of the skin to various additional exposomes such as ultraviolet radiation (UVR), pollution and cigarette smoke. There are many controversies or inconsistencies regarding RISI, from molecular aspects and therapy to terminology. There is lack of high-quality and large-sample studies in both forms of RISI: acute (aRISI) and chronic (cRISI). Finally, no gold standards in the management of aRISI and cRISI have been established yet. In this article, the authors discuss the pathogenesis, clinical picture, prevention and clinical interventions and present a proposed treatment algorithm.
Collapse
Affiliation(s)
- Jakub Pazdrowski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan, Poland
| | - Justyna Gornowicz-Porowska
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Kaźmierska
- Department of Radiotherapy, Poznan University of Medical Sciences, Poznan, Poland
- Radiotherapy and Oncology, Greater Poland Cancer Centre, Poznan, Poland
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Adriana Polanska
- Department of Dermatology and Venereology Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States
| | - Mateusz Szewczyk
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan, Poland
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan, Poland
| | | |
Collapse
|
3
|
De Chiara F, Ferret-Miñana A, Fernández-Costa JM, Ramón-Azcón J. The Tissue Engineering Revolution: From Bench Research to Clinical Reality. Biomedicines 2024; 12:453. [PMID: 38398055 PMCID: PMC10886508 DOI: 10.3390/biomedicines12020453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
At its core, tissue engineering involves the use of a scaffold for the formation of new viable tissue for medical purposes [...].
Collapse
Affiliation(s)
- Francesco De Chiara
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (A.F.-M.); (J.R.-A.)
| | - Ainhoa Ferret-Miñana
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (A.F.-M.); (J.R.-A.)
| | | | - Javier Ramón-Azcón
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (A.F.-M.); (J.R.-A.)
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain;
| |
Collapse
|
4
|
Quiñones-Vico MI, Fernández-González A, Ubago-Rodríguez A, Moll K, Norrby-Teglund A, Svensson M, Gutiérrez-Fernández J, Torres JM, Arias-Santiago S. Antibiotics against Pseudomonas aeruginosa on Human Skin Cell Lines: Determination of the Highest Non-Cytotoxic Concentrations with Antibiofilm Capacity for Wound Healing Strategies. Pharmaceutics 2024; 16:117. [PMID: 38258128 PMCID: PMC10818945 DOI: 10.3390/pharmaceutics16010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Pseudomonas aeruginosa is one of the most common microorganisms causing infections of severe skin wounds. Antibiotic or antiseptic treatments are crucial to prevent and curb these infections. Antiseptics have been reported to be cytotoxic to skin cells and few studies evaluate the impact of commonly used antibiotics. This study evaluates how clinical antibiotics affect skin cells' viability, proliferation, migration, and cytokine secretion and defines the highest non-cytotoxic concentrations that maintain antibacterial activity. Cell proliferation, viability, and migration were evaluated on cell monolayers. Cytokines related to the wound healing process were determined. The minimum inhibitory concentrations and the impact on bacterial biofilm were assessed. Results showed that 0.02 mg/mL ciprofloxacin and 1 mg/mL meropenem are the highest non-cytotoxic concentrations for fibroblasts and keratinocytes while 1.25 mg/mL amikacin and 0.034 mg/mL colistin do not affect fibroblasts' viability and cytokine secretion but have an impact on keratinocytes. These concentrations are above the minimum inhibitory concentration but only amikacin could eradicate the biofilm. For the other antibiotics, cytotoxic concentrations are needed to eradicate the biofilm. Combinations with colistin at non-cytotoxic concentrations effectively eliminate the biofilm. These results provide information about the concentrations required when administering topical antibiotic treatments on skin lesions, and how these antibiotics affect wound management therapies. This study set the basis for the development of novel antibacterial wound healing strategies such as antibiotic artificial skin substitutes.
Collapse
Affiliation(s)
- María I. Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.I.Q.-V.); (A.U.-R.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
- Dermatology Department, School of Medicine, University of Granada, 18016 Granada, Spain
- Biochemistry, Molecular Biology III and Immunology Department, University of Granada, 18071 Granada, Spain;
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.I.Q.-V.); (A.U.-R.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
| | - Ana Ubago-Rodríguez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.I.Q.-V.); (A.U.-R.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
| | - Kirsten Moll
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden; (K.M.); (A.N.-T.); (M.S.)
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden; (K.M.); (A.N.-T.); (M.S.)
| | - Mattias Svensson
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden; (K.M.); (A.N.-T.); (M.S.)
| | | | - Jesús M. Torres
- Biochemistry, Molecular Biology III and Immunology Department, University of Granada, 18071 Granada, Spain;
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.I.Q.-V.); (A.U.-R.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
- Dermatology Department, School of Medicine, University of Granada, 18016 Granada, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| |
Collapse
|