1
|
Barovic M, Hahn JJ, Heinrich A, Adhikari T, Schwarz P, Mirtschink P, Funk A, Kabisch S, Pfeiffer AFH, Blüher M, Seissler J, Stefan N, Wagner R, Fritsche A, Jumpertz von Schwartzenberg R, Chlamydas S, Harb H, Mantzoros CS, Chavakis T, Schürmann A, Birkenfeld AL, Roden M, Solimena M, Bornstein SR, Perakakis N. Proteomic and Metabolomic Signatures in Prediabetes Progressing to Diabetes or Reversing to Normoglycemia Within 1 Year. Diabetes Care 2025; 48:405-415. [PMID: 39746149 DOI: 10.2337/dc24-1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE Progression of prediabetes to type 2 diabetes has been associated with β-cell dysfunction, whereas its remission to normoglycemia has been related to improvement of insulin sensitivity. To understand the mechanisms and identify potential biomarkers related to prediabetes trajectories, we compared the proteomics and metabolomics profile of people with prediabetes progressing to diabetes or reversing to normoglycemia within 1 year. RESEARCH DESIGN AND METHODS The fasting plasma concentrations of 1,389 proteins and the fasting, 30-min, and 120-min post-oral glucose tolerance test (OGTT) plasma concentrations of 152 metabolites were measured in up to 134 individuals with new-onset diabetes, prediabetes, or normal glucose tolerance. For 108 participants, the analysis was repeated with samples from 1 year before, when all had prediabetes. RESULTS The plasma concentrations of 14 proteins were higher in diabetes compared with normoglycemia in a population with prediabetes 1 year before, and they correlated with indices of insulin sensitivity. Higher levels of dicarbonyl/L-xylulose reductase and glutathione S-transferase A3 in the prediabetic state were associated with an increased risk of diabetes 1 year later. Pathway analysis pointed toward differences in immune response between diabetes and normoglycemia that were already recognizable in the prediabetic state 1 year prior at baseline. The area under the curve during OGTT of the concentrations of IDL particles, IDL apolipoprotein B, and IDL cholesterol was higher in new-onset diabetes compared with normoglycemia. The concentration of glutamate increased in prediabetes progressing to diabetes. CONCLUSIONS We identify new candidates associated with the progression of prediabetes to diabetes or its remission to normoglycemia. Pathways regulating the immune response are related to prediabetes trajectories.
Collapse
Affiliation(s)
- Marko Barovic
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Joke Johanna Hahn
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Annett Heinrich
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Trishla Adhikari
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Peter Schwarz
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Peter Mirtschink
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases Partner Site Dresden, Dresden, Germany
| | - Alexander Funk
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases Partner Site Dresden, Dresden, Germany
| | - Stefan Kabisch
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas F H Pfeiffer
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Institute of Human Nutrition Potsdam-Rehbrücke, Brandenburg, Germany
| | - Matthias Blüher
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Medicine, Endocrinology and Nephrology, Universität Leipzig, Leipzig, Germany
| | - Jochen Seissler
- German Center for Diabetes Research, Neuherberg, Germany
- Diabetes Center, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Norbert Stefan
- German Center for Diabetes Research, Neuherberg, Germany
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine IV, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Robert Wagner
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Fritsche
- German Center for Diabetes Research, Neuherberg, Germany
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine IV, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Reiner Jumpertz von Schwartzenberg
- German Center for Diabetes Research, Neuherberg, Germany
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine IV, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | | | - Hani Harb
- Institute for Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
- Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases Partner Site Dresden, Dresden, Germany
| | - Annette Schürmann
- German Center for Diabetes Research, Neuherberg, Germany
- German Institute of Human Nutrition Potsdam-Rehbrücke, Brandenburg, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research, Neuherberg, Germany
- Division of Diabetology, Endocrinology and Nephrology, Department of Internal Medicine IV, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Michael Roden
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michele Solimena
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Munich, University Hospital and Faculty of Medicine, Molecular Diabetology, Technische Universität Dresden, Dresden, Germany
| | - Stefan R Bornstein
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences, King's College London, London, U.K
| | - Nikolaos Perakakis
- German Center for Diabetes Research, Neuherberg, Germany
- Paul Langerhans Institute Dresden, Helmholtz Center Munich, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Daya T, Breytenbach A, Gu L, Kaur M. Cholesterol metabolism in pancreatic cancer and associated therapeutic strategies. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159578. [PMID: 39542394 DOI: 10.1016/j.bbalip.2024.159578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Pancreatic cancer remains one of the most lethal cancers due to late diagnosis and high chemoresistance. Despite recent progression in the development of chemotherapies, immunotherapies, and potential nanoparticles-based approaches, the success rate of therapeutic response is limited which is further compounded by cancer drug resistance. Understanding of emerging biological and molecular pathways causative of pancreatic cancer's aggressive and chemoresistance is vital to improve the effectiveness of existing therapeutics and to develop new therapies. One such under-investigated and relatively less explored area of research is documenting the effect that lipids, specifically cholesterol, and its metabolism, impose on pancreatic cancer. Dysregulated cholesterol metabolism has a profound role in supporting cellular proliferation, survival, and promoting chemoresistance and this has been well established in various other cancers. Thus, we aimed to provide an in-depth review focusing on the significance of cholesterol metabolism in pancreatic cancer and relevant genes at play, molecular processes contributing to cellular cholesterol homeostasis, and current research efforts to develop new cholesterol-targeting therapeutics. We highlight the caveats, weigh in different experimental therapeutic strategies, and provide possible suggestions for future research highlighting cholesterol's importance as a therapeutic target against pancreatic cancer resistance and cancer progression.
Collapse
Affiliation(s)
- Tasvi Daya
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Andrea Breytenbach
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Liang Gu
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, 2050 Johannesburg, South Africa.
| |
Collapse
|
3
|
Zarovni N, Mladenović D, Brambilla D, Panico F, Chiari M. Stoichiometric constraints for detection of EV-borne biomarkers in blood. J Extracell Vesicles 2025; 14:e70034. [PMID: 39901737 PMCID: PMC11791308 DOI: 10.1002/jev2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025] Open
Abstract
Stochiometric issues, encompassing both the quantity and heterogeneity of extracellular vesicles (EVs) derived from tumour or other tissues in blood, pose important challenges across various stages of biomarker discovery and detection, affecting the integrity of data, introducing losses and artifacts during blood processing, EV purification and analysis. These challenges shape the diagnostic utility of EVs especially within the framework of established and emerging methodologies. By addressing these challenges, we aim to delineate crucial parameters and requirements for tumour-specific EV detection, or more precisely, for tumour identification via EV based assays. Our endeavour involves a comprehensive examination of the layers that mask or confound the traceability of EV markers such as nucleic acids and proteins, and focus on 'low prevalence-low concentration' scenario. Finally, we evaluate the advantages versus limitations of single-particle analysers over more conventional bulk assays, suggesting that the combined use of both to capture and interpret the EV signals, in particular the EV surface displayed proteins, may ultimately provide quantitative information on their absolute abundance and distribution.
Collapse
Affiliation(s)
| | - Danilo Mladenović
- HansaBioMed Life Sciences OÜTallinnEstonia
- School of Natural Sciences and HealthTallinn UniversityTallinnEstonia
| | - Dario Brambilla
- Institute of Chemical Sciences and TechnologyNational Research Council of ItalyMilanItaly
| | - Federica Panico
- Institute of Chemical Sciences and TechnologyNational Research Council of ItalyMilanItaly
| | - Marcella Chiari
- RoseBioMilanItaly
- Institute of Chemical Sciences and TechnologyNational Research Council of ItalyMilanItaly
| |
Collapse
|
4
|
Stadler JT, Borenich A, Pammer A, Emrich IE, Habisch H, Madl T, Heine GH, Marsche G. Association of Small HDL Subclasses with Mortality Risk in Chronic Kidney Disease. Antioxidants (Basel) 2024; 13:1511. [PMID: 39765838 PMCID: PMC11673888 DOI: 10.3390/antiox13121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
High-density lipoproteins (HDL) exist in various subclasses, with smaller HDL particles possessing the highest anti-oxidative and anti-inflammatory properties. Understanding the role of these specific subclasses in chronic kidney disease (CKD) could provide valuable insights into disease progression and potential therapeutic targets. In the present study, we assessed HDL subclass composition in 463 patients with CKD stage 2-4 using nuclear magnetic resonance spectroscopy. Over a mean follow-up period of 5.0 years, 18.6% of patients died. Compared to survivors, deceased patients exhibited significantly lower levels of cholesterol, ApoA-I, and ApoA-II within the small and extra-small (XS) HDL subclasses. Multivariable Cox regression analysis, adjusted for traditional cardiovascular and renal risk factors, demonstrated that reduced levels of XS-HDL-cholesterol, XS-HDL-ApoA-I, and XS-HDL-ApoA-II were independently associated with an increased risk of mortality. Furthermore, receiver operating characteristic analysis identified XS-HDL-ApoA-II as the most potent prognostic marker for mortality. In conclusion, reduced small and XS-HDL subclasses, especially XS-HDL-ApoA-II, are strongly associated with increased all-cause mortality risk in CKD patients. Assessment of HDL subclass distribution could provide valuable clinical information and help identify patients at high risk.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (A.P.)
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstraße 8, 8010 Graz, Austria
| | - Andrea Borenich
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria;
| | - Anja Pammer
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (A.P.)
| | - Insa E. Emrich
- Faculty of Medicine, Saarland University, 66421 Saarbrücken, Germany;
| | - Hansjörg Habisch
- Division of Medical Chemistry, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (H.H.); (T.M.)
| | - Tobias Madl
- Division of Medical Chemistry, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (H.H.); (T.M.)
- BioTechMed Graz, 8010 Graz, Austria
| | - Gunnar H. Heine
- Faculty of Medicine, Saarland University, 66421 Saarbrücken, Germany;
- Department of Nephrology, Agaplesion Markus Krankenhaus, 60431 Frankfurt am Main, Germany
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; (J.T.S.); (A.P.)
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
5
|
Akiyama T, Ikegami R, Kubota N, Takano T, Yoneyama S, Okubo T, Hoyano M, Ozaki K, Inomata T. Serum Apolipoprotein-A2 Levels Are a Strong Predictor of Future Cardiovascular Events in Patients Undergoing Percutaneous Coronary Intervention. Circ J 2024; 88:1770-1777. [PMID: 38897974 DOI: 10.1253/circj.cj-24-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
BACKGROUND Because apolipoprotein-A2 (ApoA2), a key component of high-density lipoprotein cholesterol (HDL-C), lacks clear clinical significance, we investigated its impact on cardiovascular events in patients undergoing percutaneous coronary intervention (PCI). METHODS AND RESULTS We examined 638 patients who underwent PCI with a new-generation drug-eluting stent for acute or chronic coronary syndrome and had their apolipoprotein levels measured between 2016 and 2021. The patients were divided into 2 groups based on the median serum ApoA2 values, and the incidence of major adverse cardiovascular events (MACE) was assessed. Of the 638 patients, 563 (88%) received statin treatment, with a median serum LDL-C level of 93 mg/dL. Furthermore, 137 patients (21.5%) experienced MACE, and Kaplan-Meier analysis revealed that the higher ApoA2 group had a significantly lower incidence of MACE than the lower ApoA2 group (30.9% vs. 41.6%). However, the other apolipoproteins, including ApoA1, ApoB, ApoC2, ApoC3, and ApoE, showed no significant differences in MACE. Multivariable Cox hazard analysis indicated that ApoA2 was an independent predictor of MACEs (hazard ratio, 0.666; 95% confidence interval, 0.465-0.954). Furthermore, ApoA2 levels exhibited the strongest inverse association with high-sensitivity C-reactive protein levels (rs=-0.479). CONCLUSIONS Among all the apolipoproteins, the serum ApoA2 level may be the strongest predictor of future cardiovascular events and prognosis in patients undergoing PCI.
Collapse
Affiliation(s)
- Takumi Akiyama
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences
| | - Ryutaro Ikegami
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences
| | - Naoki Kubota
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences
| | - Toshiki Takano
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences
| | - Shintaro Yoneyama
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences
| | - Takeshi Okubo
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences
| | - Makoto Hoyano
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences
| | - Kazuyuki Ozaki
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences
| | - Takayuki Inomata
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences
| |
Collapse
|
6
|
Bhale AS, Meilhac O, d'Hellencourt CL, Vijayalakshmi MA, Venkataraman K. Cholesterol transport and beyond: Illuminating the versatile functions of HDL apolipoproteins through structural insights and functional implications. Biofactors 2024; 50:922-956. [PMID: 38661230 DOI: 10.1002/biof.2057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
High-density lipoproteins (HDLs) play a vital role in lipid metabolism and cardiovascular health, as they are intricately involved in cholesterol transport and inflammation modulation. The proteome of HDL particles is indeed complex and distinct from other components in the bloodstream. Proteomics studies have identified nearly 285 different proteins associated with HDL; however, this review focuses more on the 15 or so traditionally named "apo" lipoproteins. Important lipid metabolizing enzymes closely working with the apolipoproteins are also discussed. Apolipoproteins stand out for their integral role in HDL stability, structure, function, and metabolism. The unique structure and functions of each apolipoprotein influence important processes such as inflammation regulation and lipid metabolism. These interactions also shape the stability and performance of HDL particles. HDLs apolipoproteins have multifaceted roles beyond cardiovascular diseases (CVDs) and are involved in various physiological processes and disease states. Therefore, a detailed exploration of these apolipoproteins can offer valuable insights into potential diagnostic markers and therapeutic targets. This comprehensive review article aims to provide an in-depth understanding of HDL apolipoproteins, highlighting their distinct structures, functions, and contributions to various physiological processes. Exploiting this knowledge holds great potential for improving HDL function, enhancing cholesterol efflux, and modulating inflammatory processes, ultimately benefiting individuals by limiting the risks associated with CVDs and other inflammation-based pathologies. Understanding the nature of all 15 apolipoproteins expands our knowledge of HDL metabolism, sheds light on their pathological implications, and paves the way for advancements in the diagnosis, prevention, and treatment of lipid and inflammatory-related disorders.
Collapse
Affiliation(s)
- Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Olivier Meilhac
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | - Christian Lefebvre d'Hellencourt
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, Saint-Pierre, France
| | | | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
7
|
Birner C, Mester P, Liebisch G, Höring M, Schmid S, Müller M, Pavel V, Buechler C. Lipid Metabolism Disorders as Diagnostic Biosignatures in Sepsis. Infect Dis Rep 2024; 16:806-819. [PMID: 39311203 PMCID: PMC11417812 DOI: 10.3390/idr16050062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Critical illness causes disturbances in lipid metabolism. Here, we investigated the levels of apolipoprotein A-IV (apoA-IV), a regulator of triglyceride and cholesterol metabolism, in human sepsis. ApoA-IV (analyzed in 156 patients with systemic inflammatory response syndrome (SIRS)/sepsis) and cholesteryl ester (CE) (analyzed in 121 of these patients) were lower in patients compared to 43 healthy controls. In contrast, triglyceride (TG) levels were elevated in patients. ApoA-IV levels in plasma of the patients did not correlate with these lipids. Patients with SIRS, sepsis or septic shock had comparable apoA-IV, TG, CE and free cholesterol (FC) levels. Patients on dialysis had significantly lower CE levels, whereas apoA-IV levels did not change much. CE levels were elevated in patients with viral sepsis due to SARS-CoV-2 infection in comparison to SIRS/sepsis patients not infected by this virus. CE levels correlated negatively with procalcitonin, interleukin-6 and bilirubin, while TGs were positively associated with bilirubin and C-reactive protein. ApoA-IV, TG, CE and FC levels were not associated with bacterial infection or survival. In conclusion, this analysis suggests that CE levels decline in sepsis-related renal failure and also shows that plasma apoA-IV and CE levels are early biomarkers of sepsis.
Collapse
Affiliation(s)
- Charlotte Birner
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (P.M.); (S.S.); (M.M.); (V.P.)
| | - Patricia Mester
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (P.M.); (S.S.); (M.M.); (V.P.)
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053 Regensburg, Germany; (G.L.); (M.H.)
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053 Regensburg, Germany; (G.L.); (M.H.)
| | - Stephan Schmid
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (P.M.); (S.S.); (M.M.); (V.P.)
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (P.M.); (S.S.); (M.M.); (V.P.)
| | - Vlad Pavel
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (P.M.); (S.S.); (M.M.); (V.P.)
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (C.B.); (P.M.); (S.S.); (M.M.); (V.P.)
| |
Collapse
|
8
|
Han H, Zhang JM, Ji S, Zeng XB, Jin XC, Shen ZQ, Xie B, Luo XN, Li K, Liu LP. Histology and transcriptomic analysis reveal the inflammation and affected pathways under 2-methylisoborneol (2-MIB) exposure on grass carp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173233. [PMID: 38763196 DOI: 10.1016/j.scitotenv.2024.173233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/19/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
2-Methylisoborneol (2-MIB) is a common and widely distributed off-flavor compound in water. However, the toxic mechanisms of 2-MIB on aquatic organisms remain largely unexplored. In this study, grass carp larvae were exposed to different concentrations (0, 5, and 20 μg L-1) of 2-MIB for 96 h. The accumulation of 2-MIB in the dorsal muscle was measured. Histological analysis, ultrastructure observations, and transcriptomic sequencing were conducted on the liver tissues. The results showed that 2-MIB accumulated significantly in the fish muscle, with the accumulation increasing as the exposure concentration increased through gas chromatography-mass spectrometry (GC-MS) detection. Histological and ultrastructure observations indicated that 2-MIB caused concentration-dependent inflammatory infiltration and mitochondrial damage in the liver. Transcriptomic analysis revealed lipid metabolism disorders induced by exposure to 2-MIB in grass carp. Additionally, 5 μg L-1 2-MIB affected the neurodevelopment and cardiovascular system of grass carp larvae through extracellular matrix (ECM)-receptor interaction and focal adhesion pathway. Furthermore, several pathways related to the digestive system were significantly enriched, implying that 2-MIB may impact pancreatic secretion function, protein digestion and absorption processes. These findings provide new insights into the potential toxicological mechanisms of 2-MIB.
Collapse
Affiliation(s)
- Huan Han
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Jun-Ming Zhang
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Shuang Ji
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Xiang-Biao Zeng
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Xi-Chen Jin
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Zi-Qian Shen
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Bin Xie
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Xue-Neng Luo
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Kang Li
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Li-Ping Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
9
|
Luo Y, Yang J, Wang Y. Quantitative proteomics assay reveals G protein-coupled receptor kinase 4-induced HepG2 cell growth inhibition. Heliyon 2024; 10:e29514. [PMID: 38638965 PMCID: PMC11024620 DOI: 10.1016/j.heliyon.2024.e29514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Background and aim To investigate the biological effects and putative biological mechanism of G protein-coupled receptor kinase 4 (GRK4) on HepG2 cells. Materials and methods Cell proliferation, cycle, and apoptosis were evaluated by Cell Counting Kit-8 and flow cytometry (FCM) in HepG2 cells infected with either the GRK4-overexpressing lentivirus vector (OE) or the negative control lentivirus vector (NC). The protein profiles and differentially expressed proteins (DEPs) of the OE and NC cells were analyzed and compared using the quantitative proteomics technique, and their function, expression, and probable mechanism were investigated using bioinformatic assays and parallel reaction monitoring (PRM). Results HepG2 cells that received the OE grew more slowly than those that received the NC. FCM revealed that, when compared to the NC cells, the OE cells had undergone S-phase cycle arrest, and neither the OE nor NC cells underwent apoptosis. Among the 7006 proteins that were identified by quantitative proteomics, 403 DEPs were examined based on the filtering parameters, with the expressions of 135 being downregulated and 268 being upregulated. In addition to being involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, the DEPs were implicated in the biological processes of cell proliferation, cycle, and metabolism. PRM verified the expressions of DEPs that were connected to the PPAR pathway. Conclusions This study shows that GRK4 prevents HepG2 cells from proliferating and causes cell cycle arrest in the S-phase, while the PPAR pathway is involved in the regulation of HepG2 cells via GRK4.
Collapse
Affiliation(s)
- Yunxiu Luo
- Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Department of Radiotherapy Oncology, Haikou, 570311, China
- Hainan Clinical Research Center for Hepatopathy and Liver Critical Illness, Haikou, 570311, China
| | - Jing Yang
- Guilin Medical University, Center for Science Research, Guilin, 541004, China
| | - Yan Wang
- Central South University, The Second Xiangya Hospital, Department of Surgery, Changsha, 410011, China
| |
Collapse
|
10
|
Saremi S, Khajeh K. Amyloid fibril cytotoxicity and associated disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:265-290. [PMID: 38811083 DOI: 10.1016/bs.pmbts.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Misfolded proteins assemble into fibril structures that are called amyloids. Unlike usually folded proteins, misfolded fibrils are insoluble and deposit extracellularly or intracellularly. Misfolded proteins interrupt the function and structure of cells and cause amyloid disease. There is increasing evidence that the most pernicious species are oligomers. Misfolded proteins disrupt cell function and cause cytotoxicity by calcium imbalance, mitochondrial dysfunction, and intracellular reactive oxygen species. Despite profound impacts on health, social, and economic factors, amyloid diseases remain untreatable. To develop new therapeutics and to understand the pathological manifestations of amyloidosis, research into the origin and pathology of amyloidosis is urgently needed. This chapter describes the basic concept of amyloid disease and the function of atypical amyloid deposits in them.
Collapse
Affiliation(s)
- Sabereh Saremi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
11
|
Reijnders E, van der Laarse A, Ruhaak LR, Cobbaert CM. Closing the gaps in patient management of dyslipidemia: stepping into cardiovascular precision diagnostics with apolipoprotein profiling. Clin Proteomics 2024; 21:19. [PMID: 38429638 PMCID: PMC10908091 DOI: 10.1186/s12014-024-09465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
In persons with dyslipidemia, a high residual risk of cardiovascular disease remains despite lipid lowering therapy. Current cardiovascular risk prediction mainly focuses on low-density lipoprotein cholesterol (LDL-c) levels, neglecting other contributing risk factors. Moreover, the efficacy of LDL-c lowering by statins resulting in reduced cardiovascular risk is only partially effective. Secondly, from a metrological viewpoint LDL-c falls short as a reliable measurand. Both direct and calculated LDL-c tests produce inaccurate test results at the low end under aggressive lipid lowering therapy. As LDL-c tests underperform both clinically and metrologically, there is an urging need for molecularly defined biomarkers. Over the years, apolipoproteins have emerged as promising biomarkers in the context of cardiovascular disease as they are the functional workhorses in lipid metabolism. Among these, apolipoprotein B (ApoB), present on all atherogenic lipoprotein particles, has demonstrated to clinically outperform LDL-c. Other apolipoproteins, such as Apo(a) - the characteristic apolipoprotein of the emerging risk factor lipoprotein(a) -, and ApoC-III - an inhibitor of triglyceride-rich lipoprotein clearance -, have attracted attention as well. To support personalized medicine, we need to move to molecularly defined risk markers, like the apolipoproteins. Molecularly defined diagnosis and molecularly targeted therapy require molecularly measured biomarkers. This review provides a summary of the scientific validity and (patho)physiological role of nine serum apolipoproteins, Apo(a), ApoB, ApoC-I, ApoC-II, ApoC-III, ApoE and its phenotypes, ApoA-I, ApoA-II, and ApoA-IV, in lipid metabolism, their association with cardiovascular disease, and their potential as cardiovascular risk markers when measured in a multiplex apolipoprotein panel.
Collapse
Affiliation(s)
- Esther Reijnders
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Arnoud van der Laarse
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
12
|
Gangwar A, Deodhar SS, Saldanha S, Melander O, Abbasi F, Pearce RW, Collier TS, McPhaul MJ, Furtado JD, Sacks FM, Merrill NJ, McDermott JE, Melchior JT, Rohatgi A. Proteomic Determinants of Variation in Cholesterol Efflux: Observations from the Dallas Heart Study. Int J Mol Sci 2023; 24:15526. [PMID: 37958510 PMCID: PMC10648649 DOI: 10.3390/ijms242115526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
High-density lipoproteins (HDLs) are promising targets for predicting and treating atherosclerotic cardiovascular disease (ASCVD), as they mediate removal of excess cholesterol from lipid-laden macrophages that accumulate in the vasculature. This functional property of HDLs, termed cholesterol efflux capacity (CEC), is inversely associated with ASCVD. HDLs are compositionally diverse, associating with >250 different proteins, but their relative contribution to CEC remains poorly understood. Our goal was to identify and define key HDL-associated proteins that modulate CEC in humans. The proteomic signature of plasma HDL was quantified in 36 individuals in the multi-ethnic population-based Dallas Heart Study (DHS) cohort that exhibited persistent extremely high (>=90th%) or extremely low CEC (<=10th%) over 15 years. Levels of apolipoprotein (Apo)A-I associated ApoC-II, ApoC-III, and ApoA-IV were differentially correlated with CEC in high (r = 0.49, 0.41, and -0.21 respectively) and low (r = -0.46, -0.41, and 0.66 respectively) CEC groups (p for heterogeneity (pHet) = 0.03, 0.04, and 0.003 respectively). Further, we observed that levels of ApoA-I with ApoC-III, complement C3 (CO3), ApoE, and plasminogen (PLMG) were inversely associated with CEC in individuals within the low CEC group (r = -0.11 to -0.25 for subspecies with these proteins vs. r = 0.58 to 0.65 for subspecies lacking these proteins; p < 0.05 for heterogeneity). These findings suggest that enrichment of specific proteins on HDLs and, thus, different subspecies of HDLs, differentially modulate the removal of cholesterol from the vasculature.
Collapse
Affiliation(s)
- Anamika Gangwar
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.G.); (S.S.D.); (S.S.)
| | - Sneha S. Deodhar
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.G.); (S.S.D.); (S.S.)
| | - Suzanne Saldanha
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.G.); (S.S.D.); (S.S.)
| | - Olle Melander
- Department of Clinical Sciences, Lund University, 221 00 Malmö, Sweden;
| | - Fahim Abbasi
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Ryan W. Pearce
- Quest Diagnostics Cardiometabolic Center of Excellence, Cleveland HeartLab, Cleveland, OH 44103, USA; (R.W.P.); (T.S.C.)
| | - Timothy S. Collier
- Quest Diagnostics Cardiometabolic Center of Excellence, Cleveland HeartLab, Cleveland, OH 44103, USA; (R.W.P.); (T.S.C.)
| | - Michael J. McPhaul
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA 92675, USA;
| | - Jeremy D. Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (J.D.F.); (F.M.S.)
- Biogen Inc., Cambridge, MA 02115, USA
| | - Frank M. Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (J.D.F.); (F.M.S.)
| | - Nathaniel J. Merrill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (N.J.M.); (J.E.M.); (J.T.M.)
| | - Jason E. McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (N.J.M.); (J.E.M.); (J.T.M.)
| | - John T. Melchior
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (N.J.M.); (J.E.M.); (J.T.M.)
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Anand Rohatgi
- Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.G.); (S.S.D.); (S.S.)
| |
Collapse
|
13
|
Fuior EV, Zvintzou E, Filippatos T, Giannatou K, Mparnia V, Simionescu M, Gafencu AV, Kypreos KE. Peroxisome Proliferator-Activated Receptor α in Lipoprotein Metabolism and Atherosclerotic Cardiovascular Disease. Biomedicines 2023; 11:2696. [PMID: 37893070 PMCID: PMC10604751 DOI: 10.3390/biomedicines11102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a group of ligand-binding transcription factors with pivotal action in regulating pleiotropic signaling pathways of energetic metabolism, immune responses and cell proliferation and differentiation. A significant body of evidence indicates that the PPARα receptor is an important modulator of plasma lipid and lipoprotein metabolism, with pluripotent effects influencing the lipid and apolipoprotein cargo of both atherogenic and antiatherogenic lipoproteins and their functionality. Clinical evidence supports an important role of PPARα agonists (fibric acid derivatives) in the treatment of hypertriglyceridemia and/or low high-density lipoprotein (HDL) cholesterol levels, although the effects of clinical trials are contradictory and point to a reduction in the risk of nonfatal and fatal myocardial infarction events. In this manuscript, we provide an up-to-date critical review of the existing relevant literature.
Collapse
Affiliation(s)
- Elena Valeria Fuior
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
| | - Evangelia Zvintzou
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
| | - Theodosios Filippatos
- Internal Medicine Clinic, Department of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Katerina Giannatou
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
| | - Victoria Mparnia
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
| | - Anca Violeta Gafencu
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
| | - Kyriakos E. Kypreos
- Institute of Cellular Biology and Pathology, “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (E.V.F.); (E.Z.); (M.S.)
- Pharmacology Laboratory, Department of Medicine, University of Patras, 26500 Rio Achaias, Greece; (K.G.); (V.M.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| |
Collapse
|
14
|
Reyes A, Hatcher JD, Salazar E, Galan J, Iliuk A, Sanchez EE, Suntravat M. Proteomic Profiling of Extracellular Vesicles Isolated from Plasma and Peritoneal Exudate in Mice Induced by Crotalus scutulatus scutulatus Crude Venom and Its Purified Cysteine-Rich Secretory Protein (Css-CRiSP). Toxins (Basel) 2023; 15:434. [PMID: 37505703 PMCID: PMC10467150 DOI: 10.3390/toxins15070434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Increased vascular permeability is a frequent outcome of viperid snakebite envenomation, leading to local and systemic complications. We reported that snake venom cysteine-rich secretory proteins (svCRiSPs) from North American pit vipers increase vascular permeability both in vitro and in vivo. They also induce acute activation of several adhesion and signaling molecules that may play a critical role in the pathophysiology of snakebites. Extracellular vesicles (EVs) have gained interest for their diverse functions in intercellular communication, regulating cellular processes, blood-endothelium interactions, vascular permeability, and immune modulation. They also hold potential as valuable biomarkers for diagnosing, predicting, and monitoring therapeutic responses in different diseases. This study aimed to identify proteins in peritoneal exudate and plasma EVs isolated from BALB/c mice following a 30 min post-injection of Crotalus scutulatus scutulatus venom and its purified CRiSP (Css-CRiSP). EVs were isolated from these biofluids using the EVtrap method. Proteomic analysis of exudate- and plasma-derived EVs was performed using LC-MS/MS. We observed significant upregulation or downregulation of proteins involved in cell adhesion, cytoskeleton rearrangement, signal transduction, immune responses, and vesicle-mediated transports. These findings suggest that svCRiSPs play a crucial role in the acute effects of venom and contribute to the local and systemic toxicity of snakebites.
Collapse
Affiliation(s)
- Armando Reyes
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (A.R.); (J.D.H.); (E.S.); (E.E.S.)
| | - Joseph D. Hatcher
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (A.R.); (J.D.H.); (E.S.); (E.E.S.)
| | - Emelyn Salazar
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (A.R.); (J.D.H.); (E.S.); (E.E.S.)
| | - Jacob Galan
- Department of Human Genetics, The University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78539, USA;
| | - Anton Iliuk
- Tymora Analytical Operations, West Lafayette, IN 47906, USA;
| | - Elda E. Sanchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (A.R.); (J.D.H.); (E.S.); (E.E.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| | - Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (A.R.); (J.D.H.); (E.S.); (E.E.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| |
Collapse
|
15
|
Starodubtseva NL, Tokareva AO, Rodionov VV, Brzhozovskiy AG, Bugrova AE, Chagovets VV, Kometova VV, Kukaev EN, Soares NC, Kovalev GI, Kononikhin AS, Frankevich VE, Nikolaev EN, Sukhikh GT. Integrating Proteomics and Lipidomics for Evaluating the Risk of Breast Cancer Progression: A Pilot Study. Biomedicines 2023; 11:1786. [PMID: 37509426 PMCID: PMC10376786 DOI: 10.3390/biomedicines11071786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Metastasis is a serious and often life-threatening condition, representing the leading cause of death among women with breast cancer (BC). Although the current clinical classification of BC is well-established, the addition of minimally invasive laboratory tests based on peripheral blood biomarkers that reflect pathological changes in the body is of utmost importance. In the current study, the serum proteome and lipidome profiles for 50 BC patients with (25) and without (25) metastasis were studied. Targeted proteomic analysis for concertation measurements of 125 proteins in the serum was performed via liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM MS) using the BAK 125 kit (MRM Proteomics Inc., Victoria, BC, Canada). Untargeted label-free lipidomic analysis was performed using liquid chromatography coupled to tandem mass-spectrometry (LC-MS/MS), in both positive and negative ion modes. Finally, 87 serum proteins and 295 lipids were quantified and showed a moderate correlation with tumor grade, histological and biological subtypes, and the number of lymph node metastases. Two highly accurate classifiers that enabled distinguishing between metastatic and non-metastatic BC were developed based on proteomic (accuracy 90%) and lipidomic (accuracy 80%) features. The best classifier (91% sensitivity, 89% specificity, AUC = 0.92) for BC metastasis diagnostics was based on logistic regression and the serum levels of 11 proteins: alpha-2-macroglobulin, coagulation factor XII, adiponectin, leucine-rich alpha-2-glycoprotein, alpha-2-HS-glycoprotein, Ig mu chain C region, apolipoprotein C-IV, carbonic anhydrase 1, apolipoprotein A-II, apolipoprotein C-II and alpha-1-acid glycoprotein 1.
Collapse
Affiliation(s)
- Natalia L Starodubtseva
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Department of Chemical Physics, Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| | - Alisa O Tokareva
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Valeriy V Rodionov
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Alexander G Brzhozovskiy
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Laboratory of Omics Technologies and Big Data for Personalized Medicine and Health, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Anna E Bugrova
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vitaliy V Chagovets
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Vlada V Kometova
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Evgenii N Kukaev
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nelson C Soares
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Grigoriy I Kovalev
- Laboratory of Omics Technologies and Big Data for Personalized Medicine and Health, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Alexey S Kononikhin
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Laboratory of Omics Technologies and Big Data for Personalized Medicine and Health, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Vladimir E Frankevich
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Evgeny N Nikolaev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Gennady T Sukhikh
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| |
Collapse
|
16
|
Rhee SJ, Shin D, Shin D, Song Y, Joo EJ, Jung HY, Roh S, Lee SH, Kim H, Bang M, Lee KY, Lee J, Kim J, Kim Y, Kim Y, Ahn YM. Network analysis of plasma proteomes in affective disorders. Transl Psychiatry 2023; 13:195. [PMID: 37296094 DOI: 10.1038/s41398-023-02485-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The conventional differentiation of affective disorders into major depressive disorder (MDD) and bipolar disorder (BD) has insufficient biological evidence. Utilizing multiple proteins quantified in plasma may provide critical insight into these limitations. In this study, the plasma proteomes of 299 patients with MDD or BD (aged 19-65 years old) were quantified using multiple reaction monitoring. Based on 420 protein expression levels, a weighted correlation network analysis was performed. Significant clinical traits with protein modules were determined using correlation analysis. Top hub proteins were determined using intermodular connectivity, and significant functional pathways were identified. Weighted correlation network analysis revealed six protein modules. The eigenprotein of a protein module with 68 proteins, including complement components as hub proteins, was associated with the total Childhood Trauma Questionnaire score (r = -0.15, p = 0.009). Another eigenprotein of a protein module of 100 proteins, including apolipoproteins as hub proteins, was associated with the overeating item of the Symptom Checklist-90-Revised (r = 0.16, p = 0.006). Functional analysis revealed immune responses and lipid metabolism as significant pathways for each module, respectively. No significant protein module was associated with the differentiation between MDD and BD. In conclusion, childhood trauma and overeating symptoms were significantly associated with plasma protein networks and should be considered important endophenotypes in affective disorders.
Collapse
Affiliation(s)
- Sang Jin Rhee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dongyoon Shin
- Department of Biomedical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Daun Shin
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoojin Song
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun-Jeong Joo
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon, Republic of Korea
- Department of Psychiatry, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, Republic of Korea
| | - Hee Yeon Jung
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Sungwon Roh
- Department of Psychiatry, Hanyang University Hospital and Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Hyeyoung Kim
- Department of Psychiatry, Inha University Hospital, Incheon, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Kyu Young Lee
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon, Republic of Korea
- Department of Psychiatry, Nowon Eulji University Hospital, Seoul, Republic of Korea
| | - Jihyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaenyeon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeongshin Kim
- Department of Biomedical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Youngsoo Kim
- Department of Biomedical Science, School of Medicine, CHA University, Seongnam, Republic of Korea.
| | - Yong Min Ahn
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Huang M, Zheng J, Chen L, You S, Huang H. Advances in the study of the pathogenesis of obesity: Based on apolipoproteins. Clin Chim Acta 2023; 545:117359. [PMID: 37086940 DOI: 10.1016/j.cca.2023.117359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Obesity is a state presented by excessive accumulation and abnormal distribution of body fat, with metabolic disorders being one of its distinguishing features. Obesity is associated with dyslipidemia, apolipoproteins are important structural components of plasma lipoproteins, which influence lipid metabolism in the body by participating in lipoprotein metabolism and are closely related to the progression of obesity. Apolipoproteins influence the progression of obesity from lipid metabolism, energy expenditure and inflammatory response. In this review, we discuss the alterations of apolipoproteins in obesity, understand the potential mechanisms by which apolipoproteins affect obesity, as well as provide new targets for the treatment of obesity.
Collapse
Affiliation(s)
- Mingjing Huang
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian Province China; Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jingyi Zheng
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian Province China; Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Lijun Chen
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Sufang You
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian Province China; Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Huibin Huang
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
18
|
Bae G, Berezhnoy G, Koch A, Cannet C, Schäfer H, Kommoss S, Brucker S, Beziere N, Trautwein C. Stratification of ovarian cancer borderline from high-grade serous carcinoma patients by quantitative serum NMR spectroscopy of metabolites, lipoproteins, and inflammatory markers. Front Mol Biosci 2023; 10:1158330. [PMID: 37168255 PMCID: PMC10166069 DOI: 10.3389/fmolb.2023.1158330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
Background: Traditional diagnosis is based on histology or clinical-stage classification which provides no information on tumor metabolism and inflammation, which, however, are both hallmarks of cancer and are directly associated with prognosis and severity. This project was an exploratory approach to profile metabolites, lipoproteins, and inflammation parameters (glycoprotein A and glycoprotein B) of borderline ovarian tumor (BOT) and high-grade serous ovarian cancer (HGSOC) for identifying additional useful serum markers and stratifying ovarian cancer patients in the future. Methods: This project included 201 serum samples of which 50 were received from BOT and 151 from high-grade serous ovarian cancer (HGSOC), respectively. All the serum samples were validated and phenotyped by 1H-NMR-based metabolomics with in vitro diagnostics research (IVDr) standard operating procedures generating quantitative data on 38 metabolites, 112 lipoprotein parameters, and 5 inflammation markers. Uni- and multivariate statistics were applied to identify NMR-based alterations. Moreover, biomarker analysis was carried out with all NMR parameters and CA-125. Results: Ketone bodies, glutamate, 2-hydroxybutyrate, glucose, glycerol, and phenylalanine levels were significantly higher in HGSOC, while the same tumors showed significantly lower levels of alanine and histidine. Furthermore, alanine and histidine and formic acid decreased and increased, respectively, over the clinical stages. Inflammatory markers glycoproteins A and B (GlycA and GlycB) increased significantly over the clinical stages and were higher in HGSOC, alongside significant changes in lipoproteins. Lipoprotein subfractions of VLDLs, IDLs, and LDLs increased significantly in HGSOC and over the clinical stages, while total plasma apolipoprotein A1 and A2 and a subfraction of HDLs decreased significantly over the clinical stages. Additionally, LDL triglycerides significantly increased in advanced ovarian cancer. In biomarker analysis, glycoprotein inflammation biomarkers behaved in the same way as the established clinical biomarker CA-125. Moreover, CA-125/GlycA, CA-125/GlycB, and CA-125/Glycs are potential biomarkers for diagnosis, prognosis, and treatment response of epithelial ovarian cancer (EOC). Last, the quantitative inflammatory parameters clearly displayed unique patterns of metabolites, lipoproteins, and CA-125 in BOT and HGSOC with clinical stages I-IV. Conclusion: 1H-NMR-based metabolomics with commercial IVDr assays could detect and identify altered metabolites and lipoproteins relevant to EOC development and progression and show that inflammation (based on glycoproteins) increased along with malignancy. As inflammation is a hallmark of cancer, glycoproteins, thereof, are promising future serum biomarkers for the diagnosis, prognosis, and treatment response of EOC. This was supported by the definition and stratification of three different inflammatory serum classes which characterize specific alternations in metabolites, lipoproteins, and CA-125, implicating that future diagnosis could be refined not only by diagnosed histology and/or clinical stages but also by glycoprotein classes.
Collapse
Affiliation(s)
- Gyuntae Bae
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Georgy Berezhnoy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - André Koch
- Department of Women’s Health, University Hospital Tübingen, Tübingen, Germany
| | | | | | - Stefan Kommoss
- Department of Women’s Health, University Hospital Tübingen, Tübingen, Germany
| | - Sara Brucker
- Department of Women’s Health, University Hospital Tübingen, Tübingen, Germany
| | - Nicolas Beziere
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence CMFI (EXC 2124) “Controlling Microbes to Fight Infections”, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
- *Correspondence: Christoph Trautwein,
| |
Collapse
|
19
|
Zhu R, Xu Y, Wang Z, Li H, Song M, Wan H, Yang H, Zhang X, Chai Y, Yu B. Higher serum apolipoprotein B level will reduce the bone mineral density and increase the risk of osteopenia or osteoporosis in adults. Front Cell Dev Biol 2022; 10:1054365. [PMID: 36568987 PMCID: PMC9780286 DOI: 10.3389/fcell.2022.1054365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Objective: There is very limited evidence in the NHANES database linking serum apolipoprotein B and lumbar bone mineral density (BMD) in adults aged 20-59 years. There are few studies associating apolipoprotein B concentrations with BMD, and there is some debate about the association between obesity and BMD. Therefore, the purpose of this study was to determine the association between serum apolipoprotein B concentrations and lumbar spine BMD in adults aged 20-59 years and to predict its association with risk of osteopenia or osteoporosis. Methods: A cross-sectional study of the entire US ambulatory population was conducted using data from the National Health and Nutrition Examination Survey (NHANES) database. Weighted multiple regression equation models were used to assess the association between serum apolipoprotein B and lumbar BMD. A logistic weighted regression model was used to assess the association between serum apolipoprotein B concentrations and risk of osteopenia or osteoporosis. Subsequent stratified analyses were performed to refine the primary population of association. Results: Our study showed a significant negative association between serum apolipoprotein B concentration and lumbar BMD and a significant positive association with the risk of osteoporosis or osteopenia in the total population. After stratifying by sex, age and race, we concluded differently. The association of serum apolipoprotein B concentration with lumbar spine BMD and risk of osteopenia or osteoporosis was significant in male, but not in female. After stratification by age, the negative association between serum apolipoprotein B concentrations and lumbar BMD and the positive association with risk of osteopenia or osteoporosis was more significant in the 30-39 and 50-59 years age groups. When stratified by race, serum apolipoprotein B concentrations were significantly negatively associated with lumbar BMD and positively associated with risk of osteopenia or osteoporosis in Mexican American and non-Hispanic black populations. Thus, these findings suggest that these associations are influenced by sex, age, and race, respectively. Conclusion: Our results suggest that the association between serum apolipoprotein B levels and the risk of lumbar BMD and osteopenia or osteoporosis varies by sex, age, and race. In men, elevated serum apolipoprotein B levels were negative for bone quality. Elevated serum apolipoprotein B levels in the age groups 30-39 and 50-59 years also had a negative effect on bone quality. In the Mexican American and Non-Hispanic Black populations, elevated serum apolipoprotein B levels also had a significant negative effect on bone quality.
Collapse
Affiliation(s)
- RunJiu Zhu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Xu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - ZhaoFu Wang
- Department of Orthopaedics, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Hui Li
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - MingRui Song
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - HaoYang Wan
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China,Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China,Department of Orthopaedics & Traumatology, Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China
| | - Yu Chai
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Bin Yu, ; Yu Chai,
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Bin Yu, ; Yu Chai,
| |
Collapse
|