1
|
Albano F, Severini FL, Calice G, Zoppoli P, Falco G, Notarangelo T. The role of the tumor microenvironment and inflammatory pathways in driving drug resistance in gastric cancer: A systematic review and meta-analysis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167821. [PMID: 40203956 DOI: 10.1016/j.bbadis.2025.167821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
Tumor microenvironment (TME) plays a pivotal role in progression and low responsiveness to chemotherapy of gastric cancer (GC). The cascade of events that culminate with a sustained and chronic activation of inflammatory pathways underlies gastric tumorigenesis. Infiltrating immune cells enrolling in crosstalk with cancer cells that regulate inflammatory and immune status, generating an immunosuppressive TME that influences the response to therapy. Here we discuss the role of TME and the activation of inflammatory pathways to comprehend strategies to improve drug response. Furthermore, we provides systematic insight the role of TME cytotypes and related signatures reinforcing the critical roles of TAMs and Tregs, in promoting GC chemoresistance and tumor progression.
Collapse
Affiliation(s)
- Francesco Albano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Francesca Lospinoso Severini
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, PZ, Rionero in Vulture, Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, PZ, Rionero in Vulture, Italy
| | - Pietro Zoppoli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, Naples, Italy; Biogem, Istituto di Biologia e Genetica Molecolare, AV, Ariano Irpino, Italy
| | - Tiziana Notarangelo
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, PZ, Rionero in Vulture, Italy.
| |
Collapse
|
2
|
Lospinoso Severini F, Falco G, Notarangelo T. Role of Soluble Cytokine Receptors in Gastric Cancer Development and Chemoresistance. Int J Mol Sci 2025; 26:2534. [PMID: 40141175 PMCID: PMC11942508 DOI: 10.3390/ijms26062534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Gastric cancer is among the top five most important malignancies in the world due to the high burden of the disease and its lethality. Indeed, it is the fourth most common cause of death worldwide, characterized by a poor prognosis and low responsiveness to chemotherapy. Multidrug resistance limits the clinical management of the patient. Among these, the role of chronic activation of inflammatory pathways underlying gastric tumorigenesis should be highlighted. Furthermore, the gastric immunosuppressive TME influences the response to therapy. This review discusses the role of soluble cytokine receptors in the development and chemoresistance of gastric cancer, considered as a molecular marker and target of strategies to overcome resistance.
Collapse
Affiliation(s)
- Francesca Lospinoso Severini
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, 85028 Rionero in Vulture, PZ, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, 80138 Napoli, NA, Italy
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, AV, Italy
| | - Tiziana Notarangelo
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, 85028 Rionero in Vulture, PZ, Italy
| |
Collapse
|
3
|
Ye W, Zhao Q, Li P, Zhou T. Scleromitrion diffusum (Willd.) R. J. Wang Inhibits Gastric Cancer via ERBB2/ERBB3/PI3K/AKT Pathway. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2024; 35:831-838. [PMID: 39549017 PMCID: PMC11562600 DOI: 10.5152/tjg.2024.24152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/26/2024] [Indexed: 11/18/2024]
Abstract
Background/Aims This study aimed to evaluate the anticarcinogenic potential of Scleromitrion diffusum (Willd.) R. J. Wang (SD) extracts in vitro, along with exploring the underlying compatibility mechanisms. Materials and Methods Scleromitrion diffusum (Willd.) R. J. Wang extract was prepared and gastric cancer (GC) cells were treated to detect the half maximal inhibitory concentration (IC50)/proliferation and migration/invasion by MTS method and transwell assay. The compatibility mechanisms of SD were analyzed by systems pharmacology strategy, combined with cellular experimental validation. Results Scleromitrion diffusum (Willd.) R. J. Wang extract showed inhibitory ability on the proliferation of the GC cell lines dose- and time-dependently. A total of 3 active ingredients are involved in anti-gastric cancer effects of SD, based on the top 50 pathways. The "herb-composition-target-pathway" network showed the multi-target and multi-pathway characteristics of SD. There were 52 related targets shared by SD and GC. The cellular experiments supported that SD significantly reduced ERBB2 and ERBB3 expression levels in GC cells. The overexpression of ERBB2 or ERBB3 partially offset the anti-tumor effects of SD. Conclusion Scleromitrion diffusum (Willd.) R. J. Wang inhibited gastric cancer growth and metastasis in vitro, which may be related to the inhibition of the ERBB2/ERBB3/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Wei Ye
- Department of Oncology, Changzhou Cancer Hospital, Changzhou, China
| | - Qiu Zhao
- Department of Oncology, Changzhou Cancer Hospital, Changzhou, China
| | - Peng Li
- Department of Oncology, Changzhou Cancer Hospital, Changzhou, China
| | - Tong Zhou
- Department of Oncology, Changzhou Cancer Hospital, Changzhou, China
| |
Collapse
|
4
|
Liu J, Yuan Q, Guo H, Guan H, Hong Z, Shang D. Deciphering drug resistance in gastric cancer: Potential mechanisms and future perspectives. Biomed Pharmacother 2024; 173:116310. [PMID: 38394851 DOI: 10.1016/j.biopha.2024.116310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Gastric cancer (GC) is a malignant tumor that originates from the epithelium of the gastric mucosa. The latest global cancer statistics show that GC ranks fifth in incidence and fourth in mortality among all cancers, posing a serious threat to public health. While early-stage GC is primarily treated through surgery, chemotherapy is the frontline option for advanced cases. Currently, commonly used chemotherapy regimens include FOLFOX (oxaliplatin + leucovorin + 5-fluorouracil) and XELOX (oxaliplatin + capecitabine). However, with the widespread use of chemotherapy, an increasing number of cases of drug resistance have emerged. This article primarily explores the potential mechanisms of chemotherapy resistance in GC patients from five perspectives: cell death, tumor microenvironment, non-coding RNA, epigenetics, and epithelial-mesenchymal transition. Additionally, it proposes feasibility strategies to overcome drug resistance from four angles: cancer stem cells, tumor microenvironment, natural products, and combined therapy. The hope is that this article will provide guidance for researchers in the field and bring hope to more GC patients.
Collapse
Affiliation(s)
- Jiahua Liu
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qihang Yuan
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Guo
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hewen Guan
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Zhijun Hong
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Dong Shang
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
5
|
邓 金, 潘 腾, 周 广, 高 悦, 彭 伟, 魏 玮, 吕 纯. [High expression of secretogranin II increases oxaliplatin resistance of colorectal cancer cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1657-1664. [PMID: 37933640 PMCID: PMC10630195 DOI: 10.12122/j.issn.1673-4254.2023.10.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE To investigate the expression of secretogranin II (SCG2) in colorectal cancer (CRC) tissues and its impact on oxaliplatin resistance of CRC cells. METHODS We performed immunohistochemistry to detect the expression level of SCG2 on a tissue microarray containing 96 CRC and 84 adjacent tissues and analyzed the association of SCG2 expression with the clinical features of the CRC patients. SCG2 expression was also measured in DLD1 cells treated with oxaliplatin using immunoblotting and RT-qPCR analyses. The effects of SCG2 expression on oxaliplatin sensitivity and cell viability were evaluated in a DLD1 cell model of SCG2 knockout established using CRISPR-cas9 technique, and the expressions of apoptosis-related proteins were detected using Western blotting and RT-qPCR. We further examined SCG2 expression levels in an oxaliplatin-resistant DLD1 cell line and its parental DLD1 cells. RESULTS SCG2 expression was significantly increased in CRC tissues as compared with the adjacent tissues (1.932±0.816 vs 1), and the tumor tissues in advanced stages showed higher SCG2 expression levels. In DLD1 cells, treatment with oxaliplatin significantly increased SCG2 expression, and SCG2 knockout obviously increased oxaliplatin sensitivity of the cells and enhanced the expressions of apoptosis-related proteins. Compared with the parental cells, oxaliplatin-resistant DLD1 cells showed a significant increase of SCG2 expression by 3.901±0.471 folds. CONCLUSION SCG2 may serve as a risk gene in CRC, and its high expression increases oxaliplatin resistance of CRC cells.
Collapse
Affiliation(s)
- 金海 邓
- 北京大学基础医学院免疫学系;卫生部医学免疫学重点实验室;北京大学人类疾病基因研究中心,北京 100191Department of Immunology, School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology; Center for Human Disease Genomics, Peking University, Beijing 100191, China
- 湖南自兴智慧医疗科技有限公司,湖南 长沙 410221Hunan Zixing Intelligent Medical Technology Co., Ltd., Changsha 410221, China
| | - 腾 潘
- 天津医科大学肿瘤医院国家肿瘤临床医学研究中心;天津市"肿瘤防治"重点实验室;天津市恶性肿瘤临床医学研究中心,天津 300202Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300202, China
| | - 广林 周
- 深圳市龙岗区妇幼保健院//汕头大学医学院龙岗妇幼临床学院,广东 深圳 518172Department of Breast Surgery, Longgang District Maternity and Child Healthcare Hospital//Longgang Maternity and Child Institute of Shantou University Medical College, Shenzhen 518172, China
| | - 悦 高
- 湖南自兴智慧医疗科技有限公司,湖南 长沙 410221Hunan Zixing Intelligent Medical Technology Co., Ltd., Changsha 410221, China
| | - 伟雄 彭
- 湖南自兴智慧医疗科技有限公司,湖南 长沙 410221Hunan Zixing Intelligent Medical Technology Co., Ltd., Changsha 410221, China
| | - 玮 魏
- 上海市浦东新区浦南医院肿瘤科,上海 200120Department of Oncology, Punan Hospital of Pudong New District, Shanghai 200120, China
| | - 纯鑫 吕
- 上海市浦东新区浦南医院肿瘤科,上海 200120Department of Oncology, Punan Hospital of Pudong New District, Shanghai 200120, China
| |
Collapse
|
6
|
Bogdan M, Meca AD, Turcu-Stiolica A, Oancea CN, Kostici R, Surlin MV, Florescu C. Insights into the Relationship between Pentraxin-3 and Cancer. Int J Mol Sci 2022; 23:15302. [PMID: 36499628 PMCID: PMC9739619 DOI: 10.3390/ijms232315302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Although cancer can be cured if detected early and treated effectively, it is still a leading cause of death worldwide. Tumor development can be limited by an appropiate immune response, but it can be promoted by chronic extensive inflammation through metabolic dysregulation and angiogenesis. In the past decade, numerous efforts have been made in order to identify novel candidates with predictive values in cancer diagnostics. In line with this, researchers have investigated the involvement of pentraxin-3 (PTX-3) in cellular proliferation and immune escape in various types of cancers, although it has not been clearly elucidated. PTX-3 is a member of the long pentraxin subfamily which plays an important role in regulating inflammation, innate immunity response, angiogenesis, and tissue remodeling. Increased synthesis of inflammatory biomarkers and activation of different cellular mechanisms can induce PTX-3 expression in various types of cells (neutrophils, monocytes, lymphocytes, myeloid dendritic cells, fibroblasts, and epithelial cells). PTX-3 has both pro- and anti-tumor functions, thus dual functions in oncogenesis. This review elucidates the potential usefulness of PTX-3 as a serum biomarker in cancer. While future investigations are needed, PTX-3 is emerging as a promising tool for cancer's diagnosis and prognosis, and also treatment monitoring.
Collapse
Affiliation(s)
- Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Andreea-Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Adina Turcu-Stiolica
- Department of Pharmacoeconomics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carmen Nicoleta Oancea
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Roxana Kostici
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Marin Valeriu Surlin
- Department of General Surgery, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cristina Florescu
- Department of Cardiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|