1
|
Mirnia K, Bitaraf M, Namakin K, Azimzadeh A, Tanourlouee SB, Zolbin MM, Masoumi A, Kajbafzadeh AM. Enhancing Late Retinopathy of Prematurity Outcomes with Fresh Bone Marrow Mononuclear Cells and Melatonin Combination Therapy. Stem Cell Rev Rep 2025; 21:466-476. [PMID: 39503829 DOI: 10.1007/s12015-024-10819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 03/04/2025]
Abstract
INTRODUCTION Retinopathy of prematurity (ROP) is a vasoproliferative disease affecting premature neonates with life-lasting impacts. This study aims to investigate the long-term functional outcomes and alterations in neural retina architecture following the intravitreal transplantation of bone marrow mononuclear cells (BMMNC) in the rat models of ROP, and to evaluate the effect of adjunctive therapy with melatonin. METHODS 32 neonate rats were employed. The ROP model was developed in 10 neonatal rats, and two were assigned as control. The ROP models received BMMNC suspension, containing 1.2 × 105 cells, in their right eye, and normal saline in left at p12. Five ROP rats received 12.5 mg/kg melatonin orally for five days (p12 to p17). Optical coherence tomography (OCT) and electroretinography (ERG) were performed on p47. Eyes were then harvested on p47, and after six months for histology, immunofluorescence (anti-calbindin, anti-PKC, and anti-Brn3), and immunohistochemistry (synaptophysin). RESULTS Cell therapy alone and with melatonin increased retinal thickness, and improved oscillatory potentials on ERG. Combination therapy increased horizontal and retinal ganglion cell populations. All treatments improved synaptic maturity in the inner plexiform layer, but only combination therapy was effective on the outer plexiform layer. CONCLUSION Melatonin and BMMNCs combination therapy effectively ameliorates retinal structural and functional deficits at later ROP stages, without causing severe adverse effects. It significantly increases the survival of post-receptor retinal neurons and preserves retinal synaptic structures in the long term, highlighting the promising potential of this novel combination therapy approach to minimize visual deficits in ROP patients.
Collapse
Affiliation(s)
- Kayvan Mirnia
- Pediatrics Center of Excellence, Department of Neonatology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Bitaraf
- Pediatric Urology and Regenerative Medicine Research Center, Pediatric Center of Excellence, Gene, Cell & Tissue Research Institute Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Namakin
- Pediatric Urology and Regenerative Medicine Research Center, Pediatric Center of Excellence, Gene, Cell & Tissue Research Institute Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Pediatric Center of Excellence, Gene, Cell & Tissue Research Institute Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Behboodi Tanourlouee
- Pediatric Urology and Regenerative Medicine Research Center, Pediatric Center of Excellence, Gene, Cell & Tissue Research Institute Tehran University of Medical Sciences, Tehran, Iran.
- Children's Medical Center, Gharib st., Keshavarz blvd., Tehran, 419733151, Iran.
| | - Masoume Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Pediatric Center of Excellence, Gene, Cell & Tissue Research Institute Tehran University of Medical Sciences, Tehran, Iran.
- Children's Medical Center, Gharib st., Keshavarz blvd., Tehran, 419733151, Iran.
| | - Ahmad Masoumi
- Ophthalmology Department and Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Pediatric Center of Excellence, Gene, Cell & Tissue Research Institute Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Xu Z, Wu Y, Mao J, Chen Y, Chen H, Zhang S, Yu J, Deng X, Shen L. 4D label-free proteomics analysis of oxygen-induced retinopathy with or without anti-VEGF treatment. BMC Genomics 2024; 25:415. [PMID: 38671350 PMCID: PMC11046906 DOI: 10.1186/s12864-024-10340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/23/2024] [Indexed: 04/28/2024] Open
Abstract
Oxygen-induced retinopathy (OIR) animal model is widely used for retinopathy of prematurity (ROP) researches. The purpose of this study was to identify proteins and related pathways of OIR with or without anti-vascular endothelial growth factor (VEGF) treatment, for use as biomarkers in diagnosing and treating ROP. Nine samples were subjected to proteomic analysis. Retina specimens were collected from 3 OIR mice, 3 OIR mice with anti-VEGF treatment and 3 normal mice (control group). Liquid chromatography-tandem mass spectrometry analysis was performed using the 4D label-free technique. Statistically significant differentially expressed proteins, gene ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway representations, InterPro (IPR) and protein interactions were analyzed. In total, 4585 unique proteins were identified as differentially expressed proteins (DEPs). Enrichment analysis of the GO and KEGG indicated functional clusters related to peptide biosynthetic and metabolic process, cellular macromolecule biosynthetic process and nucleic acid binding in OIR group. For anti-VEGF treatment group, DEPs were clustered in DNA replication, PI3K/Akt signaling pathway and Jak/STAT signaling pathway. Proteomic profiling is useful for the exploration of molecular mechanisms of OIR and mechanisms of anti-VEGF treatment. These findings may be useful for identification of novel biomarkers for ROP pathogenesis and treatment.
Collapse
Affiliation(s)
- Zhaokai Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yubo Wu
- Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jianbo Mao
- Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yiqi Chen
- Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Huan Chen
- Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shian Zhang
- Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jiafeng Yu
- Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xinyi Deng
- Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lijun Shen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
| |
Collapse
|
3
|
Zhang L, Buonfiglio F, Fieß A, Pfeiffer N, Gericke A. Retinopathy of Prematurity-Targeting Hypoxic and Redox Signaling Pathways. Antioxidants (Basel) 2024; 13:148. [PMID: 38397746 PMCID: PMC10885953 DOI: 10.3390/antiox13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Retinopathy of prematurity (ROP) is a proliferative vascular ailment affecting the retina. It is the main risk factor for visual impairment and blindness in infants and young children worldwide. If left undiagnosed and untreated, it can progress to retinal detachment and severe visual impairment. Geographical variations in ROP epidemiology have emerged over recent decades, attributable to differing levels of care provided to preterm infants across countries and regions. Our understanding of the causes of ROP, screening, diagnosis, treatment, and associated risk factors continues to advance. This review article aims to present the pathophysiological mechanisms of ROP, including its treatment. Specifically, it delves into the latest cutting-edge treatment approaches targeting hypoxia and redox signaling pathways for this condition.
Collapse
Affiliation(s)
| | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (L.Z.); (F.B.); (A.F.); (N.P.)
| |
Collapse
|
4
|
Tempone MH, Borges-Martins VP, César F, Alexandrino-Mattos DP, de Figueiredo CS, Raony Í, dos Santos AA, Duarte-Silva AT, Dias MS, Freitas HR, de Araújo EG, Ribeiro-Resende VT, Cossenza M, P. Silva H, P. de Carvalho R, Ventura ALM, Calaza KC, Silveira MS, Kubrusly RCC, de Melo Reis RA. The Healthy and Diseased Retina Seen through Neuron-Glia Interactions. Int J Mol Sci 2024; 25:1120. [PMID: 38256192 PMCID: PMC10817105 DOI: 10.3390/ijms25021120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The retina is the sensory tissue responsible for the first stages of visual processing, with a conserved anatomy and functional architecture among vertebrates. To date, retinal eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, glaucoma, and others, affect nearly 170 million people worldwide, resulting in vision loss and blindness. To tackle retinal disorders, the developing retina has been explored as a versatile model to study intercellular signaling, as it presents a broad neurochemical repertoire that has been approached in the last decades in terms of signaling and diseases. Retina, dissociated and arranged as typical cultures, as mixed or neuron- and glia-enriched, and/or organized as neurospheres and/or as organoids, are valuable to understand both neuronal and glial compartments, which have contributed to revealing roles and mechanisms between transmitter systems as well as antioxidants, trophic factors, and extracellular matrix proteins. Overall, contributions in understanding neurogenesis, tissue development, differentiation, connectivity, plasticity, and cell death are widely described. A complete access to the genome of several vertebrates, as well as the recent transcriptome at the single cell level at different stages of development, also anticipates future advances in providing cues to target blinding diseases or retinal dysfunctions.
Collapse
Affiliation(s)
- Matheus H. Tempone
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Vladimir P. Borges-Martins
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Felipe César
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Dio Pablo Alexandrino-Mattos
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Camila S. de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ícaro Raony
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Aline Araujo dos Santos
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Aline Teixeira Duarte-Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana Santana Dias
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Hércules Rezende Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Elisabeth G. de Araújo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Victor Tulio Ribeiro-Resende
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Hilda P. Silva
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Roberto P. de Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ana L. M. Ventura
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Karin C. Calaza
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana S. Silveira
- Laboratory for Investigation in Neuroregeneration and Development, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil;
| | - Regina C. C. Kubrusly
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Ricardo A. de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| |
Collapse
|
5
|
Liu Y, Xu Z, Zheng H, Yang J, Wu M, Yang Q, Wang Y, Zong T, Yang X, Xie T, Cai J, Yao Y, Wang X. MiR-423-5p promotes Müller cell activation via targeting NGF signaling in diabetic retinopathy. Life Sci 2023; 334:122217. [PMID: 37925140 DOI: 10.1016/j.lfs.2023.122217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
AIMS Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus and one of the major causes of visual impairment and blindness in industrialized countries. The early neuro-glial perturbations, especially retinal Müller cells (rMC) activation, intimately associated with the vascular alterations. MicroRNAs (miRNAs) have been reported to play critical roles in the progression of DR. Here, we aimed to further explore the role and underlying mechanism of miR-423-5p in Müller cell activation in streptozotocin (STZ)-induced diabetic mice and oxygen-induced retinopathy (OIR) model. MATERIALS AND METHODS Retinal histology, optical coherence tomography (OCT) and biochemical markers were assessed. KEY FINDINGS Our data revealed that the expression of miR-423-5p was significantly increased under high-glucose environment. We also demonstrated that miR-423-5p overexpression markedly accelerated retinal vascular leakage, leukocytosis, and rMC activation. This response was ameliorated in animals pre-treated with the inhibition of miR-423-5p. Specifically, miR-423-5p bound to the nerve growth factor (NGF) 3' UTR region to induce its silencing. NGF inhibition significantly promoted retinal microvascular dysfunction. SIGNIFICANCE These findings demonstrate that miR-423-5p is a critical miRNA that promotes microvascular dysfunction in DR.
Collapse
Affiliation(s)
- Yanqiu Liu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Zifan Xu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Haohan Zheng
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Jiahui Yang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Meili Wu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Qian Yang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Yan Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Tianyi Zong
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Xusheng Yang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Tianhua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Jiping Cai
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China.
| | - Xiaolu Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China; Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, People's Republic of China.
| |
Collapse
|
6
|
Bujoreanu Bezman L, Tiutiuca C, Totolici G, Carneciu N, Bujoreanu FC, Ciortea DA, Niculet E, Fulga A, Alexandru AM, Stan DJ, Nechita A. Latest Trends in Retinopathy of Prematurity: Research on Risk Factors, Diagnostic Methods and Therapies. Int J Gen Med 2023; 16:937-949. [PMID: 36942030 PMCID: PMC10024537 DOI: 10.2147/ijgm.s401122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023] Open
Abstract
Retinopathy of prematurity (ROP) is a vasoproliferative disorder with an imminent risk of blindness, in cases where early diagnosis and treatment are not performed. The doctors' constant motivation to give these fragile beings a chance at life with optimal visual acuity has never stopped, since Terry first described this condition. Thus, throughout time, several specific advancements have been made in the management of ROP. Apart from the most known risk factors, this narrative review brings to light the latest research about new potential risk factors, such as: proteinuria, insulin-like growth factor 1 (IGF-1) and blood transfusions. Digital imaging has revolutionized the management of retinal pathologies, and it is more and more used in identifying and staging ROP, particularly in the disadvantaged regions by the means of telescreening. Moreover, optical coherence tomography (OCT) and automated diagnostic tools based on deep learning offer new perspectives on the ROP diagnosis. The new therapeutical trend based on the use of anti-VEGF agents is increasingly used in the treatment of ROP patients, and recent research sustains the theory according to which these agents do not interfere with the neurodevelopment of premature babies.
Collapse
Affiliation(s)
- Laura Bujoreanu Bezman
- Department of Ophthalmology, “Sfantul Apostol Andrei” Emergency Clinical Hospital, Galati, Romania
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Carmen Tiutiuca
- Department of Ophthalmology, “Sfantul Apostol Andrei” Emergency Clinical Hospital, Galati, Romania
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
- Correspondence: Carmen Tiutiuca, Clinical Surgical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, 800008, Romania, Tel +40741330788, Email
| | - Geanina Totolici
- Department of Ophthalmology, “Sfantul Apostol Andrei” Emergency Clinical Hospital, Galati, Romania
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Nicoleta Carneciu
- Department of Ophthalmology, “Sfantul Apostol Andrei” Emergency Clinical Hospital, Galati, Romania
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Florin Ciprian Bujoreanu
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
- Florin Ciprian Bujoreanu, Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, 800008, Romania, Tel +40741395844, Email
| | - Diana Andreea Ciortea
- Department of Pediatrics, “Sfantul Ioan” Emergency Clinical Hospital for Children, Galati, Romania
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Elena Niculet
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Ana Fulga
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Anamaria Madalina Alexandru
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
- Department of Neonatology, “Sfantul Apostol Andrei” Emergency Clinical Hospital, Galati, Romania
| | - Daniela Jicman Stan
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| | - Aurel Nechita
- Department of Pediatrics, “Sfantul Ioan” Emergency Clinical Hospital for Children, Galati, Romania
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, Galati, Romania
| |
Collapse
|