1
|
Petru AE, Iacovita C, Fizeșan I, Dudric R, Crestin IV, Lucaciu CM, Loghin F, Kiss B. Evaluating Manganese-Doped Magnetic Nanoflowers for Biocompatibility and In Vitro Magnetic Hyperthermia Efficacy. Pharmaceutics 2025; 17:384. [PMID: 40143047 PMCID: PMC11944501 DOI: 10.3390/pharmaceutics17030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Magnetic hyperthermia (MH) has emerged as a promising alternative to conventional cancer treatments, offering targeted tumor destruction with minimal damage to healthy tissues. In this study, we synthesized manganese-doped magnetic nanoflowers (Mn-NFs) using a polyol-mediated approach to enhance heating efficiency and biocompatibility for MH applications. Our objective was to evaluate their structural, magnetic, and in vitro hyperthermic properties to determine their potential for lung cancer therapy. Methods: Mn-NFs, with the general formula MnxFe3-xO4 (x = 0, 0.3, 0.5, 0.7), were synthesized via a one-step polyol method and characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). Their heating efficiency was assessed through specific absorption rate (SAR) measurements in aqueous and solid environments under an alternating magnetic field (AMF). Cytocompatibility was evaluated using the Alamar Blue assay on A549 lung carcinoma cells. Cellular uptake was quantified via a colorimetric iron determination method, while in vitro MH efficacy was tested by subjecting Mn-NF-loaded A549 cells to AMF exposure at different field strengths and nanoparticle concentrations. Results: Mn-NFs exhibited a flower-like morphology with enhanced magnetic properties, achieving high SAR values, particularly in immobilized conditions. Cytotoxicity assays confirmed high biocompatibility at relevant doses, with Mn-NFs of x = 0.3 showing optimal cellular uptake. MH studies demonstrated significant cancer cell death at AMF intensities of around 30 kA/m, with increased effectiveness following static magnetic field pre-alignment. Conclusions: The results highlight Mn-NFs, particularly those with a Mn content of x = 0.3, as promising candidates for MH-based lung cancer therapy, combining high heating efficiency, biocompatibility, and effective intracellular uptake. Further studies are needed to validate their therapeutic potential in vivo.
Collapse
Affiliation(s)
- Andreea-Elena Petru
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (A.-E.P.); (I.F.); (I.-V.C.); (F.L.); (B.K.)
| | - Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania;
| | - Ionel Fizeșan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (A.-E.P.); (I.F.); (I.-V.C.); (F.L.); (B.K.)
| | - Roxana Dudric
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania;
| | - Ionut-Valentin Crestin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (A.-E.P.); (I.F.); (I.-V.C.); (F.L.); (B.K.)
| | - Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania;
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (A.-E.P.); (I.F.); (I.-V.C.); (F.L.); (B.K.)
| | - Bela Kiss
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (A.-E.P.); (I.F.); (I.-V.C.); (F.L.); (B.K.)
| |
Collapse
|
2
|
Kumar P, Thakur N, Kumar K, Kumar S, Dutt A, Thakur VK, Gutiérrez-Rodelo C, Thakur P, Navarrete A, Thakur N. Catalyzing innovation: Exploring iron oxide nanoparticles - Origins, advancements, and future application horizons. Coord Chem Rev 2024; 507:215750. [DOI: 10.1016/j.ccr.2024.215750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Nikolaev B, Yakovleva L, Fedorov V, Li H, Gao H, Shevtsov M. Nano- and Microemulsions in Biomedicine: From Theory to Practice. Pharmaceutics 2023; 15:1989. [PMID: 37514175 PMCID: PMC10383468 DOI: 10.3390/pharmaceutics15071989] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Nano- and microemulsions are colloidal systems that are widely used in various fields of biomedicine, including wound and burn healing, cosmetology, the development of antibacterial and antiviral drugs, oncology, etc. The stability of these systems is governed by the balance of molecular interactions between nanodomains. Microemulsions as a colloidal form play a special important role in stability. The microemulsion is the thermodynamically stable phase from oil, water, surfactant and co-surfactant which forms the surface of drops with very small surface energy. The last phenomena determines the shortage time of all fluid dispersions including nanoemulsions and emulgels. This review examines the theory and main methods of obtaining nano- and microemulsions, particularly focusing on the structure of microemulsions and methods for emulsion analysis. Additionally, we have analyzed the main preclinical and clinical studies in the field of wound healing and the use of emulsions in cancer therapy, emphasizing the prospects for further developments in this area.
Collapse
Affiliation(s)
- Boris Nikolaev
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
| | - Ludmila Yakovleva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
| | - Viacheslav Fedorov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
- Department of Inorganic Chemistry and Biophysics, Saint-Petersburg State University of Veterinary Medicine, Chernigovskaya Str. 5, 196084 Saint Petersburg, Russia
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum Rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
- Laboratory of Biomedical Cell Technologies, Far Eastern Federal University, 690091 Vladivostok, Russia
| |
Collapse
|
4
|
Adam A, Mertz D. Iron Oxide@Mesoporous Silica Core-Shell Nanoparticles as Multimodal Platforms for Magnetic Resonance Imaging, Magnetic Hyperthermia, Near-Infrared Light Photothermia, and Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1342. [PMID: 37110927 PMCID: PMC10145772 DOI: 10.3390/nano13081342] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The design of core-shell nanocomposites composed of an iron oxide core and a silica shell offers promising applications in the nanomedicine field, especially for developing efficient theranostic systems which may be useful for cancer treatments. This review article addresses the different ways to build iron oxide@silica core-shell nanoparticles and it reviews their properties and developments for hyperthermia therapies (magnetically or light-induced), combined with drug delivery and MRI imaging. It also highlights the various challenges encountered, such as the issues associated with in vivo injection in terms of NP-cell interactions or the control of the heat dissipation from the core of the NP to the external environment at the macro or nanoscale.
Collapse
|
5
|
Doxorubicin Loaded Thermosensitive Magneto-Liposomes Obtained by a Gel Hydration Technique: Characterization and In Vitro Magneto-Chemotherapeutic Effect Assessment. Pharmaceutics 2022; 14:pharmaceutics14112501. [PMID: 36432692 PMCID: PMC9697793 DOI: 10.3390/pharmaceutics14112501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
The combination of magnetic hyperthermia with chemotherapy is considered a promising strategy in cancer therapy due to the synergy between the high temperatures and the chemotherapeutic effects, which can be further developed for targeted and remote-controlled drug release. In this paper we report a simple, rapid, and reproducible method for the preparation of thermosensitive magnetoliposomes (TsMLs) loaded with doxorubicin (DOX), consisting of a lipidic gel formation from a previously obtained water-in-oil microemulsion with fine aqueous droplets containing magnetic nanoparticles (MNPs) dispersed in an organic solution of thermosensitive lipids (transition temperature of ~43 °C), followed by the gel hydration with an aqueous solution of DOX. The obtained thermosensitive magnetoliposomes (TsMLs) were around 300 nm in diameter and exhibited 40% DOX incorporation efficiency. The most suitable MNPs to incorporate into the liposomal aqueous lumen were Zn ferrites, with a very low coercive field at 300 K (7 kA/m) close to the superparamagnetic regime, exhibiting a maximum absorption rate (SAR) of 1130 W/gFe when dispersed in water and 635 W/gFe when confined inside TsMLs. No toxicity of Zn ferrite MNPs or of TsMLs was noticed against the A459 cancer cell line after 48 h incubation over the tested concentration range. The passive release of DOX from the TsMLs after 48h incubation induced a toxicity starting with a dosage level of 62.5 ug/cm2. Below this threshold, the subsequent exposure to an alternating magnetic field (20-30 kA/m, 355 kHz) for 30 min drastically reduced the viability of the A459 cells due to the release of incorporated DOX. Our results strongly suggest that TsMLs represent a viable strategy for anticancer therapies using the magnetic field-controlled release of DOX.
Collapse
|
6
|
Lucaciu CM, Nitica S, Fizesan I, Filip L, Bilteanu L, Iacovita C. Enhanced Magnetic Hyperthermia Performance of Zinc Ferrite Nanoparticles under a Parallel and a Transverse Bias DC Magnetic Field. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3578. [PMID: 36296768 PMCID: PMC9611223 DOI: 10.3390/nano12203578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 05/23/2023]
Abstract
The collective organization of magnetic nanoparticles (MNPs) influences significantly their hyperthermic properties, relevant for their in vitro and in vivo applications. We report a systematic investigation of the effects of the concentration and the static bias direct current (DC) magnetic field superposed over the alternating magnetic field (AMF), both in a parallel and perpendicular configuration, on the specific absorption rate (SAR) by using zinc ferrite MNPs. The nonmonotonic dependence of the SAR on the concentration, with a maximum at very small concentrations (c ≤ 0.1 mgFe/mL), followed by a minimum at 0.25 mgFe/mL, and the second maximum of 3.3 kW/gFe at around 1 mgFe/mL, was explained by the passage of the MNPs from a single particle behavior to a collective one and the role of the dipolar interactions. By superposing a static 10 kA/m bias DC field on the AMF we obtained an increase in the SAR for both parallel and perpendicular orientations, up to 4285 W/gFe and 4070 W/gFe, respectively. To the best of our knowledge, this is the first experimental proof of a significant enhancement of the SAR produced by a perpendicular DC field. The effect of the DC field to increase the SAR is accompanied by an increase in the hyperthermia coercive field (HcHyp) for both configurations. No enhancement of the DC fields was noticed for the MNPs immobilized in a solid matrix but the DC field increases the HcHyp only in the parallel configuration. This translates into a higher SAR value for the perpendicular configuration as compared to the parallel configuration. These results have practical applications for magnetic hyperthermia.
Collapse
Affiliation(s)
- Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Stefan Nitica
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Ionel Fizesan
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 6A Pasteur St., 400349 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Iuliu Haţieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Liviu Bilteanu
- Department Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Splaiul Independentei, 050097 Bucharest, Romania
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A Erou Iancu Nicolae St., 077190 Bucharest, Romania
| | - Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| |
Collapse
|