1
|
Carrasco-Díaz LM, Gallardo A, Voltà-Durán E, Virgili AC, Páez D, Villaverde A, Vazquez E, Álamo P, Unzueta U, Casanova I, Mangues R, Alba-Castellon L. A Targeted Nanotoxin Inhibits Colorectal Cancer Growth Through Local Tumor Pyroptosis and Eosinophil Infiltration and Degranulation. Int J Nanomedicine 2025; 20:2445-2460. [PMID: 40034221 PMCID: PMC11873025 DOI: 10.2147/ijn.s499192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/14/2025] [Indexed: 03/05/2025] Open
Abstract
Background Colorectal cancer (CRC) has traditionally been treated with genotoxic chemotherapy to activate pro-apoptotic proteins to induce anticancer effects. However, cancer cells develop resistance to apoptosis, which leads to recurrence and poor prognosis. Moreover, this kind of therapy has been shown to be highly toxic to healthy tissues and, therefore, to patients. To overcome this issue, we developed a self-assembly tumor-targeted nanoparticle, T22-DITOX-H6, that incorporates the T22 peptide (a CXCR4 ligand) to selectively target cells overexpressing CXCR4, fused to the catalytic domain of diphtheria toxin, that exhibits a potent cytotoxic effect on these CXCR4+ cancer cells that exhibits potent cytotoxic effects on CXCR4-overexpressing cancer cells through the activation of pyroptosis, an immunogenic type of cell death. Methods Colorectal CXCR4-expressing tumor cells (CT26-CXCR4+) were implanted subcutaneously into immunocompetent mice to study the effects of T22-DITOX-H6 treatment on tumor growth, cell death and innate immune cell recruitment to the tumor. Results Here, we demonstrated that the T22-DITOX-H6 nanoparticle selectively activated pyroptosis, an immunogenic cell death that differs from apoptosis, leading to cell death in CXCR4-expressing cells, without affecting the viability of CXCR4-lacking cells. In addition, the nanoparticle administered to tumor-bearing mice induced a local antitumor effect due to the selective activation of pyroptosis in CXCR4+ targeted cancer cells. Biochemical analysis of plasma and histological analysis of non-tumor tissues revealed no differences between the groups. Remarkably, pyroptosis activation stimulates eosinophil infiltration into the tumor microenvironment, an effect recently reported to have an anti-tumorigenic function. Conclusion These results highlight the dual role of CXCR4-targeted cytotoxic nanoparticle in eliminating cancer cells and boosting the self-immune response without compromising healthy organs.
Collapse
Affiliation(s)
- Luis Miguel Carrasco-Díaz
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Myeloid Neoplasms Program, Josep Carreras Leukaemia Research Institute (IJC Sant Pau), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Alberto Gallardo
- Department of Pathology, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Eric Voltà-Durán
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna C Virgili
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Department of Medical Oncology, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - David Páez
- Department of Medical Oncology, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Esther Vazquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Patricia Álamo
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Myeloid Neoplasms Program, Josep Carreras Leukaemia Research Institute (IJC Sant Pau), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Ugutz Unzueta
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Myeloid Neoplasms Program, Josep Carreras Leukaemia Research Institute (IJC Sant Pau), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Isolda Casanova
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Myeloid Neoplasms Program, Josep Carreras Leukaemia Research Institute (IJC Sant Pau), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Ramon Mangues
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Myeloid Neoplasms Program, Josep Carreras Leukaemia Research Institute (IJC Sant Pau), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Lorena Alba-Castellon
- Onco-Hematological Diseases Department, Institut de Recerca SANT Pau (IR Sant Pau), Barcelona, Spain
- Myeloid Neoplasms Program, Josep Carreras Leukaemia Research Institute (IJC Sant Pau), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
2
|
Sambataro D, Gebbia V, Bonasera A, Quattrocchi AMO, Caputo G, Vinci E, Di Mattia P, Lavalle S, Pecorino B, Scandurra G, Scibilia G, Centonze D, Valerio MR. Brain Metastasis in Endometrial Cancer: A Systematic Review. Cancers (Basel) 2025; 17:402. [PMID: 39941769 PMCID: PMC11816136 DOI: 10.3390/cancers17030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Brain metastases (BMs) from endometrial cancer (EC) are rare and challenging to treat, with limited standardized guidelines. This systematic review aims to evaluate the incidence, therapeutic strategies, and outcomes associated with brain metastases in EC patients, offering insights for clinical practice and future research. METHODS A comprehensive literature search was conducted using PRISMA guidelines, including PUBMED up to October 2024. Reports reporting individual or aggregate data on EC brain metastases were included. Descriptive and quantitative analyses were performed on incidence, treatment modalities, and survival outcomes. Three reports that used data from the Surveillance, Epidemiology, and End Results and National Cancer Database were used only to assess the incidence of brain metastases from endometrial carcinoma. RESULTS From 911 reports identified, we included 99 reports, identifying 594 cases; these and the case of a patient with brain metastasis from endometrial carcinoma followed at our center were used for analysis of disease characteristics; incidence; and treatment modalities, such as surgery, radiotherapy, chemotherapy, and combinations. Survival outcomes were influenced by treatment type and disease characteristics, with multimodal approaches showing improved outcomes. DISCUSSION This review underscores the rarity of EC brain metastases and highlights the need for tailored, multimodal treatment strategies. Future research should focus on prospective trials and molecular profiling to optimize management.
Collapse
Affiliation(s)
- Daniela Sambataro
- Medical Oncology Unit, Umberto I Hospital, 94100 Enna, Italy; (A.B.); (A.M.O.Q.); (G.C.); (E.V.)
- Department of Medicine and Surgery, Kore University, 94100 Enna, Italy; (V.G.); (P.D.M.); (S.L.); (B.P.); (G.S.); (G.S.)
| | - Vittorio Gebbia
- Department of Medicine and Surgery, Kore University, 94100 Enna, Italy; (V.G.); (P.D.M.); (S.L.); (B.P.); (G.S.); (G.S.)
| | - Annalisa Bonasera
- Medical Oncology Unit, Umberto I Hospital, 94100 Enna, Italy; (A.B.); (A.M.O.Q.); (G.C.); (E.V.)
| | | | - Giuseppe Caputo
- Medical Oncology Unit, Umberto I Hospital, 94100 Enna, Italy; (A.B.); (A.M.O.Q.); (G.C.); (E.V.)
| | - Ernesto Vinci
- Medical Oncology Unit, Umberto I Hospital, 94100 Enna, Italy; (A.B.); (A.M.O.Q.); (G.C.); (E.V.)
| | - Paolo Di Mattia
- Department of Medicine and Surgery, Kore University, 94100 Enna, Italy; (V.G.); (P.D.M.); (S.L.); (B.P.); (G.S.); (G.S.)
- Surgery Unit, Umberto I Hospital, 94100 Enna, Italy;
| | - Salvatore Lavalle
- Department of Medicine and Surgery, Kore University, 94100 Enna, Italy; (V.G.); (P.D.M.); (S.L.); (B.P.); (G.S.); (G.S.)
- Diagnostic Imaging Department, Umberto I Hospital, 94100 Enna, Italy
| | - Basilio Pecorino
- Department of Medicine and Surgery, Kore University, 94100 Enna, Italy; (V.G.); (P.D.M.); (S.L.); (B.P.); (G.S.); (G.S.)
- Gynecology and Obstetrics Unit, Umberto I Hospital, 94100 Enna, Italy
| | - Giuseppa Scandurra
- Department of Medicine and Surgery, Kore University, 94100 Enna, Italy; (V.G.); (P.D.M.); (S.L.); (B.P.); (G.S.); (G.S.)
- Medical Oncology Unit, Cannizzaro Hospital, 95126 Catania, Italy
| | - Giuseppe Scibilia
- Department of Medicine and Surgery, Kore University, 94100 Enna, Italy; (V.G.); (P.D.M.); (S.L.); (B.P.); (G.S.); (G.S.)
- Gynecology Unit, Giovanni Paolo II Hospital, 97100 Ragusa, Italy
| | | | | |
Collapse
|
3
|
Yildiz M, Romano A, Xanthoulea S. Murine Xenograft Models as Preclinical Tools in Endometrial Cancer Research. Cancers (Basel) 2024; 16:3994. [PMID: 39682182 DOI: 10.3390/cancers16233994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Murine xenograft models are valuable and increasingly used preclinical tools in cancer research to understand disease pathogenesis and guide treatment options. The aim of this narrative review is to summarize the studies that employed mouse xenograft models, using cell lines, patient-derived tumors, or organoids, in endometrial cancer (EC) research, detailing their methodology and main findings. We identified 27 articles reporting on heterotopic EC xenografts, including subcutaneous, subrenal capsule, intraperitoneal, and retro-orbital models, and 18 articles using orthotopic xenografts. Subcutaneous xenografts generated using either cell lines or patient tumors have been widely used; however, their low engraftment rates and the inability to recapitulate main clinical features such as metastases limit their translational value. Subrenal capsule models showed improved engraftment rates compared to subcutaneous models, but tumors exhibited slower and constrained tumor growth. Orthotopic models are technically more challenging to generate and monitor, but tumor growth occurs in a relevant microenvironment and EC ortho-xenografts exhibit high engraftment rates and metastases to clinically relevant sites. Cell line-based xenograft (CDX) models are attractive tools because they are convenient, easy to use, and amenable to genetic modifications, making them suitable for proof-of-concept approaches and large-scale studies. EC xenografts developed from patient tumors (PDTXs) are more labor/cost-intensive for their establishment but can capture the genetic and molecular heterogeneity within and across histologic subtypes and can inform personalized patient treatment. EC organoid-based xenograft (PDOX) models combine the advantages of both CDXs and PDTXs since they are more time- and cost-effective, faithfully maintain tumor characteristics and therapeutic responses, and can be genetically modified. Despite substantial progress in EC management, there are still several unmet needs. Efficient targeted treatments are currently indicated only for a small subgroup of patients, while women with recurrent or advanced-stage EC have very few therapeutic options and their prognosis remains unfavorable. Novel (targeted) drugs, combinational regimens and tools to predict the real drug response in patients are urgently needed. Xenograft models are expected to inform about disease mechanisms and to help identify novel therapeutic options and suitable target patients.
Collapse
Affiliation(s)
- Merve Yildiz
- GROW-Research Institute for Oncology & Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Andrea Romano
- GROW-Research Institute for Oncology & Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Sofia Xanthoulea
- GROW-Research Institute for Oncology & Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
4
|
Perše M. Animal Models of Human Pathology: Revision, Relevance and Refinements. Biomedicines 2024; 12:2418. [PMID: 39594985 PMCID: PMC11592039 DOI: 10.3390/biomedicines12112418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Animal Models of Human Pathology [...].
Collapse
Affiliation(s)
- Martina Perše
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Virgili AC, Salazar J, Gallardo A, López-Pousa A, Terés R, Bagué S, Orellana R, Fumagalli C, Mangues R, Alba-Castellón L, Unzueta U, Casanova I, Sebio A. CXCR4 Expression as a Prognostic Biomarker in Soft Tissue Sarcomas. Diagnostics (Basel) 2024; 14:1195. [PMID: 38893721 PMCID: PMC11172351 DOI: 10.3390/diagnostics14111195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Poor long-term survival in localized high-risk soft tissue sarcomas (STSs) of the extremities and trunk highlights the need to identify new prognostic factors. CXCR4 is a chemokine receptor involved in tumor progression, angiogenesis, and metastasis. The aim of this study was to evaluate the association between CXCR4 expression in tumor tissue and survival in STSs patients treated with neoadjuvant therapy. CXCR4 expression was retrospectively determined by immunohistochemical analysis in serial specimens including initial biopsies, tumors post-neoadjuvant treatment, and tumors after relapse. We found that a positive cytoplasmatic expression of CXCR4 in tumors after neoadjuvant treatment was a predictor of poor recurrence-free survival (RFS) (p = 0.003) and overall survival (p = 0.019) in synovial sarcomas. We also found that positive nuclear CXCR4 expression in the initial biopsies was associated with poor RFS (p = 0.022) in undifferentiated pleomorphic sarcomas. In conclusion, our study adds to the evidence that CXCR4 expression in tumor tissue is a promising prognostic factor for STSs.
Collapse
Affiliation(s)
- Anna C. Virgili
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.C.V.); (A.L.-P.); (R.T.)
- Department of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Translational Medical Oncology Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain
| | - Juliana Salazar
- Translational Medical Oncology Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain
| | - Alberto Gallardo
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.G.); (S.B.); (R.O.); (C.F.)
| | - Antonio López-Pousa
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.C.V.); (A.L.-P.); (R.T.)
- Translational Medical Oncology Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain
| | - Raúl Terés
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.C.V.); (A.L.-P.); (R.T.)
- Translational Medical Oncology Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain
| | - Silvia Bagué
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.G.); (S.B.); (R.O.); (C.F.)
| | - Ruth Orellana
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.G.); (S.B.); (R.O.); (C.F.)
| | - Caterina Fumagalli
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.G.); (S.B.); (R.O.); (C.F.)
| | - Ramon Mangues
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (R.M.); (L.A.-C.); (U.U.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Lorena Alba-Castellón
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (R.M.); (L.A.-C.); (U.U.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Ugutz Unzueta
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (R.M.); (L.A.-C.); (U.U.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Isolda Casanova
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (R.M.); (L.A.-C.); (U.U.); (I.C.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Ana Sebio
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.C.V.); (A.L.-P.); (R.T.)
- Translational Medical Oncology Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain
| |
Collapse
|
6
|
Markowska A, Baranowski W, Pityński K, Chudecka-Głaz A, Markowska J, Sawicki W. Metastases and Recurrence Risk Factors in Endometrial Cancer-The Role of Selected Molecular Changes, Hormonal Factors, Diagnostic Methods and Surgery Procedures. Cancers (Basel) 2023; 16:179. [PMID: 38201606 PMCID: PMC10778296 DOI: 10.3390/cancers16010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
The presence of metastatic endometrial cancer (EC) is a key problem in treatment failure associated with reduced overall survival rates. The most common metastatic location is the pelvic lymph nodes, and the least common is the brain. The presence of metastasis depends on many factors, including the molecular profile of cancer (according to the TCGA-Genome Atlas), the activity of certain hormones (estrogen, prolactin), and pro-inflammatory adipocytokines. Additionally, an altered expression of microRNAs affecting the regulation of numerous genes is also related to the spread of cancer. This paper also discusses the value of imaging methods in detecting metastases; the primary role is attributed to the standard transvaginal USG with the tumor-free distance (uTFD) option. The influence of diagnostic and therapeutic methods on EC spread is also described. Hysteroscopy, according to the analysis discussed above, may increase the risk of metastases through a fluid medium, mainly performed in advanced stages of EC. According to another analysis, laparoscopic hysterectomy performed with particular attention to avoiding risky procedures (trocar flushing, tissue traumatization, preserving a margin of normal tissue) was not found to increase the risk of EC dissemination.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| | - Włodzimierz Baranowski
- Department of Gynecological Oncology, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Kazimierz Pityński
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 31-501 Krakow, Poland;
| | - Anita Chudecka-Głaz
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, 70-204 Szczecin, Poland;
| | - Janina Markowska
- Gynecological Oncology Center Poznań, Poznanska 58A, 60-850 Poznan, Poland;
| | - Włodzimierz Sawicki
- Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| |
Collapse
|
7
|
Merino JJ, Cabaña-Muñoz ME. Nanoparticles and Mesenchymal Stem Cell (MSC) Therapy for Cancer Treatment: Focus on Nanocarriers and a si-RNA CXCR4 Chemokine Blocker as Strategies for Tumor Eradication In Vitro and In Vivo. MICROMACHINES 2023; 14:2068. [PMID: 38004925 PMCID: PMC10673568 DOI: 10.3390/mi14112068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023]
Abstract
Mesenchymal stem cells (MSCs) have a high tropism for the hypoxic microenvironment of tumors. The combination of nanoparticles in MSCs decreases tumor growth in vitro as well as in rodent models of cancers in vivo. Covalent conjugation of nanoparticles with the surface of MSCs can significantly increase the drug load delivery in tumor sites. Nanoparticle-based anti-angiogenic systems (gold, silica and silicates, diamond, silver, and copper) prevented tumor growth in vitro. For example, glycolic acid polyconjugates enhance nanoparticle drug delivery and have been reported in human MSCs. Labeling with fluorescent particles (coumarin-6 dye) identified tumor cells using fluorescence emission in tissues; the conjugation of different types of nanoparticles in MSCs ensured success and feasibility by tracking the migration and its intratumor detection using non-invasive imaging techniques. However, the biosafety and efficacy; long-term stability of nanoparticles, and the capacity for drug release must be improved for clinical implementation. In fact, MSCs are vehicles for drug delivery with nanoparticles and also show low toxicity but inefficient accumulation in tumor sites by clearance of reticuloendothelial organs. To solve these problems, the internalization or conjugation of drug-loaded nanoparticles should be improved in MSCs. Finally, CXCR4 may prove to be a promising target for immunotherapy and cancer treatment since the delivery of siRNA to knock down this alpha chemokine receptor or CXCR4 antagonism has been shown to disrupt tumor-stromal interactions.
Collapse
Affiliation(s)
- José Joaquín Merino
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M.), 28040 Madrid, Spain
| | | |
Collapse
|
8
|
Voltà-Durán E, Alba-Castellón L, Serna N, Casanova I, López-Laguna H, Gallardo A, Sánchez-Chardi A, Villaverde A, Unzueta U, Vázquez E, Mangues R. High-precision targeting and destruction of cancer-associated PDGFR-β + stromal fibroblasts through self-assembling, protein-only nanoparticles. Acta Biomater 2023; 170:543-555. [PMID: 37683965 DOI: 10.1016/j.actbio.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
The need for more effective and precision medicines for cancer has pushed the exploration of new materials appropriate for drug delivery and imaging, and alternative receptors for targeting. Among the most promising strategies, finding suitable cell surface receptors and targeting agents for cancer-associated platelet derived growth factor receptor β (PDGFR-β)+ stromal fibroblasts is highly appealing. As a neglected target, this cell type mechanically and biologically supports the growth, progression, and infiltration of solid tumors in non-small cell lung, breast, pancreatic, and colorectal cancers. We have developed a family of PDGFR-β-targeted nanoparticles based on biofabricated, self-assembling proteins, upon hierarchical and iterative selective processes starting from four initial candidates. The modular protein PDGFD-GFP-H6 is well produced in recombinant bacteria, resulting in structurally robust oligomeric particles that selectively penetrates into PDGFR-β+ stromal fibroblasts in a dose-dependent manner, by means of the PDGFR-β ligand PDGFD. Upon in vivo administration, these GFP-carrying protein nanoparticles precisely accumulate in tumor tissues and enlighten them for IVIS observation. When GFP is replaced by a microbial toxin, selective tumor tissue destruction is observed associated with a significant reduction in tumor volume growth. The presented data validate the PDGFR-β/PDGFD pair as a promising toolbox for targeted drug delivery in the tumor microenvironment and oligomeric protein nanoparticles as a powerful instrument to mediate highly selective biosafe targeting in cancer through non-cancer cells. STATEMENT OF SIGNIFICANCE: We have developed a transversal platform for nanoparticle-based drug delivery into cancer-associated fibroblasts. This is based on the engineered modular protein PDGFD-GFP-H6 that spontaneously self-assemble and selectively penetrates into PDGFR-β+ stromal fibroblasts in a dose-dependent manner, by means of the PDGFR-β ligand PDGFD. In vivo, these protein nanoparticles accumulate in tumor and when incorporating a microbial toxin, they destroy tumor tissues with a significant reduction in tumor volume, in absence of side toxicities. The data presented here validate the PDGFR-β/PDGFD pair as a fully versatile toolbox for targeted drug delivery in the tumor microenvironment intended as a synergistic treatment.
Collapse
Affiliation(s)
- Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Lorena Alba-Castellón
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona 08025, Spain.
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona 08025, Spain
| | - Hèctor López-Laguna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Alberto Gallardo
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Department of Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona 08025, Spain
| | - Alejandro Sánchez-Chardi
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, Barcelona 08028, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona 08025, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona 08041, Spain; Josep Carreras Leukaemia Research Institute, Barcelona 08025, Spain.
| |
Collapse
|
9
|
T22-PE24-H6 Nanotoxin Selectively Kills CXCR4-High Expressing AML Patient Cells In Vitro and Potently Blocks Dissemination In Vivo. Pharmaceutics 2023; 15:pharmaceutics15030727. [PMID: 36986589 PMCID: PMC10054149 DOI: 10.3390/pharmaceutics15030727] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Despite advances in the development of targeted therapies for acute myeloid leukemia (AML), most patients relapse. For that reason, it is still necessary to develop novel therapies that improve treatment effectiveness and overcome drug resistance. We developed T22-PE24-H6, a protein nanoparticle that contains the exotoxin A from the bacterium Pseudomonas aeruginosa and is able to specifically deliver this cytotoxic domain to CXCR4+ leukemic cells. Next, we evaluated the selective delivery and antitumor activity of T22-PE24-H6 in CXCR4+ AML cell lines and BM samples from AML patients. Moreover, we assessed the in vivo antitumor effect of this nanotoxin in a disseminated mouse model generated from CXCR4+ AML cells. T22-PE24-H6 showed a potent, CXCR4-dependent antineoplastic effect in vitro in the MONO-MAC-6 AML cell line. In addition, mice treated with nanotoxins in daily doses reduced the dissemination of CXCR4+ AML cells compared to buffer-treated mice, as shown by the significant decrease in BLI signaling. Furthermore, we did not observe any sign of toxicity or changes in mouse body weight, biochemical parameters, or histopathology in normal tissues. Finally, T22-PE24-H6 exhibited a significant inhibition of cell viability in CXCR4high AML patient samples but showed no activity in CXCR4low samples. These data strongly support the use of T22-PE24-H6 therapy to benefit high-CXCR4-expressing AML patients.
Collapse
|
10
|
Medina-Gutiérrez E, García-León A, Gallardo A, Álamo P, Alba-Castellón L, Unzueta U, Villaverde A, Vázquez E, Casanova I, Mangues R. Potent Anticancer Activity of CXCR4-Targeted Nanostructured Toxins in Aggressive Endometrial Cancer Models. Cancers (Basel) 2022; 15:cancers15010085. [PMID: 36612081 PMCID: PMC9818013 DOI: 10.3390/cancers15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Patients with advanced endometrial cancer (EC) show poor outcomes. Thus, the development of new therapeutic approaches to prevent metastasis development in high-risk patients is an unmet need. CXCR4 is overexpressed in EC tumor tissue, epitomizing an unexploited therapeutic target for this malignancy. The in vitro antitumor activity of two CXCR4-targeted nanoparticles, including either the C. diphtheriae (T22-DITOX-H6) or P. aeruginosa (T22-PE24-H6) toxin, was evaluated using viability assays. Apoptotic activation was assessed by DAPI and caspase-3 and PARP cleavage in cell blocks. Both nanotoxins were repeatedly administrated to a subcutaneous EC mouse model, whereas T22-DITOX-H6 was also used in a highly metastatic EC orthotopic model. Tumor burden was assessed through bioluminescence, while metastatic foci and toxicity were studied using histological or immunohistochemical analysis. We found that both nanotoxins exerted a potent antitumor effect both in vitro and in vivo via apoptosis and extended the survival of nanotoxin-treated mice without inducing any off-target toxicity. Repeated T22-DITOX-H6 administration in the metastatic model induced a dramatic reduction in tumor burden while significantly blocking peritoneal, lung and liver metastasis without systemic toxicity. Both nanotoxins, but especially T22-DITOX-H6, represent a promising therapeutic alternative for EC patients that have a dismal prognosis and lack effective therapies.
Collapse
Affiliation(s)
- Esperanza Medina-Gutiérrez
- Oncogenesis and Antitumor Drugs Group, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Oncogenesis and Antitumor Drugs Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08025 Barcelona, Spain
| | - Annabel García-León
- Oncogenesis and Antitumor Drugs Group, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Oncogenesis and Antitumor Drugs Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08025 Barcelona, Spain
| | - Alberto Gallardo
- Oncogenesis and Antitumor Drugs Group, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Patricia Álamo
- Oncogenesis and Antitumor Drugs Group, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Oncogenesis and Antitumor Drugs Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08025 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Lorena Alba-Castellón
- Oncogenesis and Antitumor Drugs Group, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Oncogenesis and Antitumor Drugs Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08025 Barcelona, Spain
| | - Ugutz Unzueta
- Oncogenesis and Antitumor Drugs Group, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Oncogenesis and Antitumor Drugs Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08025 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Isolda Casanova
- Oncogenesis and Antitumor Drugs Group, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Oncogenesis and Antitumor Drugs Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08025 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (I.C.); (R.M.)
| | - Ramon Mangues
- Oncogenesis and Antitumor Drugs Group, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Oncogenesis and Antitumor Drugs Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08025 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: (I.C.); (R.M.)
| |
Collapse
|