1
|
Tykocki T. Diffuse Intrinsic Pontine Glioma and Chimeric Antigen Receptor T-Cell Therapy: An Emerging Frontier. World Neurosurg 2025; 194:123579. [PMID: 39694135 DOI: 10.1016/j.wneu.2024.123579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
This study explores the integration of chimeric antigen receptor T-cell (CAR-T) therapy with convection-enhanced delivery (CED) as a novel approach for treating diffuse intrinsic pontine glioma, a highly aggressive pediatric brain tumor with limited treatment options. Preliminary clinical results indicate that CED improves CAR-T cell distribution within the tumor microenvironment, leading to promising antitumor responses. However, challenges such as catheter-related complications and potential on-target/off-tumor toxicity remain. Ongoing research is essential to optimize these strategies and address ethical considerations surrounding patient safety and equitable access to innovative therapies. The aim is to assess the safety, efficacy, and distribution of CAR T cells delivered directly to the tumor site via CED, thereby enhancing therapeutic outcomes while minimizing systemic side effects.
Collapse
Affiliation(s)
- Tomasz Tykocki
- Department of Paediatric Neurosurgery, Children's Hospital named after Prof. Jan Bogdanowicz in Warsaw, Warsaw, Poland; Maria Sklodowska-Curie Medical Academy, Warsaw, Poland.
| |
Collapse
|
2
|
Duan M, Cao R, Yang Y, Chen X, Liu L, Ren B, Wang L, Goh BC. Blood-Brain Barrier Conquest in Glioblastoma Nanomedicine: Strategies, Clinical Advances, and Emerging Challenges. Cancers (Basel) 2024; 16:3300. [PMID: 39409919 PMCID: PMC11475686 DOI: 10.3390/cancers16193300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is a prevalent type of malignancy within the central nervous system (CNS) that is associated with a poor prognosis. The standard treatment for GBM includes the surgical resection of the tumor, followed by radiotherapy and chemotherapy; yet, despite these interventions, overall treatment outcomes remain suboptimal. The blood-brain barrier (BBB), which plays a crucial role in maintaining the stability of brain tissue under normal physiological conditions of the CNS, also poses a significant obstacle to the effective delivery of therapeutic agents to GBMs. Recent preclinical studies have demonstrated that nanomedicine delivery systems (NDDSs) offer promising results, demonstrating both effective GBM targeting and safety, thereby presenting a potential solution for targeted drug delivery. In this review, we first explore the various strategies employed in preclinical studies to overcome the BBB for drug delivery. Subsequently, the results of the clinical translation of NDDSs are summarized, highlighting the progress made. Finally, we discuss potential strategies for advancing the development of NDDSs and accelerating their translational research through well-designed clinical trials in GBM therapy.
Collapse
Affiliation(s)
- Mengyun Duan
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou 434023, China; (M.D.); (X.C.)
| | - Ruina Cao
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Wuhan 430070, China;
| | - Yuan Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Xiaoguang Chen
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou 434023, China; (M.D.); (X.C.)
| | - Lian Liu
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou 434023, China;
| | - Boxu Ren
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou 434023, China; (M.D.); (X.C.)
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Boon-Cher Goh
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| |
Collapse
|
3
|
Kappel AD, Jha R, Guggilapu S, Smith WJ, Feroze AH, Dmytriw AA, Vicenty-Padilla J, Alcedo Guardia RE, Gessler FA, Patel NJ, Du R, See AP, Peruzzi PP, Aziz-Sultan MA, Bernstock JD. Endovascular Applications for the Management of High-Grade Gliomas in the Modern Era. Cancers (Basel) 2024; 16:1594. [PMID: 38672676 PMCID: PMC11049132 DOI: 10.3390/cancers16081594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
High-grade gliomas (HGGs) have a poor prognosis and are difficult to treat. This review examines the evolving landscape of endovascular therapies for HGGs. Recent advances in endovascular catheter technology and delivery methods allow for super-selective intra-arterial cerebral infusion (SSIACI) with increasing precision. This treatment modality may offer the ability to deliver anti-tumoral therapies directly to tumor regions while minimizing systemic toxicity. However, challenges persist, including blood-brain barrier (BBB) penetration, hemodynamic complexities, and drug-tumor residence time. Innovative adjunct techniques, such as focused ultrasound (FUS) and hyperosmotic disruption, may facilitate BBB disruption and enhance drug penetration. However, hemodynamic factors that limit drug residence time remain a limitation. Expanding therapeutic options beyond chemotherapy, including radiotherapy and immunobiologics, may motivate future investigations. While preclinical and clinical studies demonstrate moderate efficacy, larger randomized trials are needed to validate the clinical benefits. Additionally, future directions may involve endovascular sampling for peri-tumoral surveillance; changes in drug formulations to prolong residence time; and the exploration of non-pharmaceutical therapies, like radioembolization and photodynamic therapy. Endovascular strategies hold immense potential in reshaping HGG treatment paradigms, offering targeted and minimally invasive approaches. However, overcoming technical challenges and validating clinical efficacy remain paramount for translating these advancements into clinical care.
Collapse
Affiliation(s)
- Ari D. Kappel
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Rohan Jha
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
| | - Saibaba Guggilapu
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
| | - William J. Smith
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Abdullah H. Feroze
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Adam A. Dmytriw
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Juan Vicenty-Padilla
- Neurosurgery Section, School of Medicine University of Puerto Rico, Medical Sciences Campus, San Juan P.O. Box 365067, Puerto Rico (R.E.A.G.)
| | - Rodolfo E. Alcedo Guardia
- Neurosurgery Section, School of Medicine University of Puerto Rico, Medical Sciences Campus, San Juan P.O. Box 365067, Puerto Rico (R.E.A.G.)
| | - Florian A. Gessler
- Department of Neurosurgery, Rostock University Hospital, 18057 Rostock, Germany
| | - Nirav J. Patel
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Rose Du
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Alfred P. See
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Pier Paolo Peruzzi
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Mohammad A. Aziz-Sultan
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joshua D. Bernstock
- Harvard Medical School, Boston, MA 02115, USA; (A.D.K.); (S.G.); (R.D.); (A.P.S.)
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
4
|
Zhao C, Zhu X, Tan J, Mei C, Cai X, Kong F. Lipid-based nanoparticles to address the limitations of GBM therapy by overcoming the blood-brain barrier, targeting glioblastoma stem cells, and counteracting the immunosuppressive tumor microenvironment. Biomed Pharmacother 2024; 171:116113. [PMID: 38181717 DOI: 10.1016/j.biopha.2023.116113] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor, characterized by high heterogeneity, strong invasiveness, poor prognosis, and a low survival rate. A broad range of nanoparticles have been recently developed as drug delivery systems for GBM therapy owing to their inherent size effect and ability to cross the blood-brain barrier (BBB). Lipid-based nanoparticles (LBNPs), such as liposomes, solid lipid NPs (SLNs), and nano-structured lipid carriers (NLCs), have emerged as the most promising drug delivery system for the treatment of GBM because of their unique size, surface modification possibilities, and proven bio-safety. In this review, the main challenges of the current clinical treatment of GBM and the strategies on how novel LBNPs overcome them were explored. The application and progress of LBNP-based drug delivery systems in GBM chemotherapy, immunotherapy, and gene therapy in recent years were systematically reviewed, and the prospect of LBNPs for GBM treatment was discussed.
Collapse
Affiliation(s)
- Changhong Zhao
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China; Lantian Pharmaceuticals Co., Ltd, Hubei, China.
| | - Xinshu Zhu
- School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an 223005, China
| | - Jianmei Tan
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Chao Mei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Xiang Cai
- Lantian Pharmaceuticals Co., Ltd, Hubei, China; School of Business, Hubei University of Science and Technology, China
| | - Fei Kong
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
5
|
Chiavelli C, Prapa M, Rovesti G, Silingardi M, Neri G, Pugliese G, Trudu L, Dall'Ora M, Golinelli G, Grisendi G, Vinet J, Bestagno M, Spano C, Papapietro RV, Depenni R, Di Emidio K, Pasetto A, Nascimento Silva D, Feletti A, Berlucchi S, Iaccarino C, Pavesi G, Dominici M. Autologous anti-GD2 CAR T cells efficiently target primary human glioblastoma. NPJ Precis Oncol 2024; 8:26. [PMID: 38302615 PMCID: PMC10834575 DOI: 10.1038/s41698-024-00506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Glioblastoma (GBM) remains a deadly tumor. Treatment with chemo-radiotherapy and corticosteroids is known to impair the functionality of lymphocytes, potentially compromising the development of autologous CAR T cell therapies. We here generated pre-clinical investigations of autologous anti-GD2 CAR T cells tested against 2D and 3D models of GBM primary cells. We detected a robust antitumor effect, highlighting the feasibility of developing an autologous anti-GD2 CAR T cell-based therapy for GBM patients.
Collapse
Affiliation(s)
- Chiara Chiavelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Malvina Prapa
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Rovesti
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Marco Silingardi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Neri
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Pugliese
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
- Leucid Bio Ltd., Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Lucia Trudu
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | - Giulia Golinelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Center for Cellular Immunotherapies, Perelman School of Medicine, and Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Jonathan Vinet
- Centro Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Bestagno
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Carlotta Spano
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Vito Papapietro
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Depenni
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Katia Di Emidio
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Anna Pasetto
- Section for Cell Therapy, Radiumhospitalet, Oslo University Hospital, Oslo, Norway
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Alberto Feletti
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurosurgery Unit, University of Verona, Verona, Italy
| | - Silvia Berlucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia - Division of Neurosurgery, Department of Neurosciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Corrado Iaccarino
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia - Division of Neurosurgery, Department of Neurosciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giacomo Pavesi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia - Division of Neurosurgery, Department of Neurosciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
6
|
Smalley I, Boire A, Brastianos P, Kluger HM, Hernando-Monge E, Forsyth PA, Ahmed KA, Smalley KSM, Ferguson S, Davies MA, Glitza Oliva IC. Leptomeningeal disease in melanoma: An update on the developments in pathophysiology and clinical care. Pigment Cell Melanoma Res 2024; 37:51-67. [PMID: 37622466 DOI: 10.1111/pcmr.13116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
Leptomeningeal disease (LMD) remains a major challenge in the clinical management of metastatic melanoma patients. Outcomes for patient remain poor, and patients with LMD continue to be excluded from almost all clinical trials. However, recent trials have demonstrated the feasibility of conducting prospective clinical trials in these patients. Further, new insights into the pathophysiology of LMD are identifying rational new therapeutic strategies. Here we present recent advances in the understanding of, and treatment options for, LMD from metastatic melanoma. We also annotate key areas of future focus to accelerate progress for this challenging but emerging field.
Collapse
Affiliation(s)
- Inna Smalley
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Priscilla Brastianos
- Department of Medicine, MGH Cancer Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Eva Hernando-Monge
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Peter A Forsyth
- Department of Neuro-Oncology and Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Kamran A Ahmed
- Department of Radiation Oncology and Immunology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Keiran S M Smalley
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Sherise Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
7
|
Hunger J, Schregel K, Boztepe B, Agardy DA, Turco V, Karimian-Jazi K, Weidenfeld I, Streibel Y, Fischer M, Sturm V, Santarella-Mellwig R, Kilian M, Jähne K, Sahm K, Wick W, Bunse L, Heiland S, Bunse T, Bendszus M, Platten M, Breckwoldt MO. In vivo nanoparticle-based T cell imaging can predict therapy response towards adoptive T cell therapy in experimental glioma. Theranostics 2023; 13:5170-5182. [PMID: 37908732 PMCID: PMC10614679 DOI: 10.7150/thno.87248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/09/2023] [Indexed: 11/02/2023] Open
Abstract
Rationale: Intrinsic brain tumors, such as gliomas are largely resistant to immunotherapies including immune checkpoint blockade. Adoptive cell therapies (ACT) including chimeric antigen receptor (CAR) or T cell receptor (TCR)-transgenic T cell therapy targeting glioma-associated antigens are an emerging field in glioma immunotherapy. However, imaging techniques for non-invasive monitoring of adoptively transferred T cells homing to the glioma microenvironment are currently lacking. Methods: Ultrasmall iron oxide nanoparticles (NP) can be visualized non-invasively by magnetic resonance imaging (MRI) and dedicated MRI sequences such as T2* mapping. Here, we develop a protocol for efficient ex vivo labeling of murine and human TCR-transgenic and CAR T cells with iron oxide NPs. We assess labeling efficiency and T cell functionality by flow cytometry and transmission electron microscopy (TEM). NP labeled T cells are visualized by MRI at 9.4 T in vivo after adoptive T cell transfer and correlated with 3D models of cleared brains obtained by light sheet microscopy (LSM). Results: NP are incorporated into T cells in subcellular cytoplasmic vesicles with high labeling efficiency without interfering with T cell viability, proliferation and effector function as assessed by cytokine secretion and antigen-specific killing assays in vitro. We further demonstrate that adoptively transferred T cells can be longitudinally monitored intratumorally by high field MRI at 9.4 Tesla in a murine glioma model with high sensitivity. We find that T cell influx and homogenous spatial distribution of T cells within the TME as assessed by T2* imaging predicts tumor response to ACT whereas incomplete T cell coverage results in treatment resistance. Conclusion: This study showcases a rational for monitoring adoptive T cell therapies non-invasively by iron oxide NP in gliomas to track intratumoral T cell influx and ultimately predict treatment outcome.
Collapse
Affiliation(s)
- Jessica Hunger
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katharina Schregel
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Berin Boztepe
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dennis Alexander Agardy
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Verena Turco
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | | | - Ina Weidenfeld
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Yannik Streibel
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Manuel Fischer
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Volker Sturm
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Michael Kilian
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Kristine Jähne
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Katharina Sahm
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, DKTK within DKFZ, Heidelberg, Germany
- Department of Neurology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Lukas Bunse
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Sabine Heiland
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Theresa Bunse
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Martin Bendszus
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
| | - Michael O. Breckwoldt
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Gatto L, Ricciotti I, Tosoni A, Di Nunno V, Bartolini S, Ranieri L, Franceschi E. CAR-T cells neurotoxicity from consolidated practice in hematological malignancies to fledgling experience in CNS tumors: fill the gap. Front Oncol 2023; 13:1206983. [PMID: 37397356 PMCID: PMC10312075 DOI: 10.3389/fonc.2023.1206983] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Chimeric antigen receptor (CAR-T) therapy has marked a paradigm shift in the treatment of hematological malignancies and represent a promising growing field also in solid tumors. Neurotoxicity is a well-recognized common complication of CAR-T therapy and is at the forefront of concerns for CAR-based immunotherapy widespread adoption, as it necessitates a cautious approach. The non-specific targeting of the CAR-T cells against normal tissues (on-target off-tumor toxicities) can be life-threatening; likewise, immune-mediate neurological symptoms related to CAR-T cell induced inflammation in central nervous system (CNS) must be precociously identified and recognized and possibly distinguished from non-specific symptoms deriving from the tumor itself. The mechanisms leading to ICANS (Immune effector Cell-Associated Neurotoxicity Syndrome) remain largely unknown, even if blood-brain barrier (BBB) impairment, increased levels of cytokines, as well as endothelial activation are supposed to be involved in neurotoxicity development. Glucocorticoids, anti-IL-6, anti-IL-1 agents and supportive care are frequently used to manage patients with neurotoxicity, but clear therapeutic indications, supported by high-quality evidence do not yet exist. Since CAR-T cells are under investigation in CNS tumors, including glioblastoma (GBM), understanding of the full neurotoxicity profile in brain tumors and expanding strategies aimed at limiting adverse events become imperative. Education of physicians for assessing individualized risk and providing optimal management of neurotoxicity is crucial to make CAR-T therapies safer and adoptable in clinical practice also in brain tumors.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Ilaria Ricciotti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Vincenzo Di Nunno
- Department of Oncology, Azienda Unità Sanitaria Locale (AUSL) Bologna, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Lucia Ranieri
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
9
|
Marei HE, Cenciarelli C. Recent Prospective in CAR T-Based Therapy for Solid and Hematological Malignancies. Biomedicines 2023; 11:627. [PMID: 36831164 PMCID: PMC9953647 DOI: 10.3390/biomedicines11020627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Given that CAR-T cell therapy is effective in CD19-positive blood malignancies, it offers great hope for a variety of aggressive tumors that have thus far shown very little response to available therapies [...].
Collapse
Affiliation(s)
- Hany E. Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35116, Egypt
| | - Carlo Cenciarelli
- Institute of Translational Pharmacology (IFT)-CNR, 00133 Rome, Italy
| |
Collapse
|
10
|
Chen X, Yu M, Xu W, Kun P, Wan W, Yuhong X, Ye J, Liu Y, Luo J. PCBP2 Reduced Oxidative Stress-Induced Apoptosis in Glioma through cGAS/STING Pathway by METTL3-Mediated m6A Modification. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9049571. [PMID: 36267817 PMCID: PMC9578808 DOI: 10.1155/2022/9049571] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022]
Abstract
Purpose The most prevalent primary malignant tumor of CNS is glioma, which has a dismal prognosis. The theory of oxidative stress is one of the important theories in the study of its occurrence and development mechanism. In this study, the impacts of PCBP2 on glioma sufferers and the possible mechanisms were examined. Methods Patients with glioma were obtained from May 2017 to July 2018. Quantitative PCR, microarray analysis, western blot analysis, and immunofluorescence were used in this experiment. Results PCBP2 mRNA expression level and protein expression in patients with glioma were upregulated compared with paracancerous tissue. OS and DFS of PCBP2 low expression in patients with glioma were higher than those of PCBP2 high expression. PCBP2 promoted the progression and metastasis of glioma. PCBP2 reduced oxidative stress-induced apoptosis of glioma. PCBP2 suppressed the cGAS/STING pathway of glioma. PCBP2 protein interlinked with cGAS and cGAS was one target for PCBP2. METTL3-mediated m6A modification increases PCBP2 stability. Conclusion Along the cGAS-STING signal pathway, PCBP2 decreased the apoptosis that oxidative stress-induced glioma caused, which might be a potential target to suppress oxidative stress-induced apoptosis of glioma.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang City, Jiangxi Province, China
| | - Mingchuan Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang City, Jiangxi Province, China
| | - Wei Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, China
| | - Peng Kun
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, China
| | - Wenbing Wan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, China
| | - Xiao Yuhong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang City, Jiangxi Province, China
| | - Jing Ye
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang City, Jiangxi Province, China
| | - Yu Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang City, Jiangxi Province, China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang City, Jiangxi Province, China
| |
Collapse
|