1
|
Kaur J, Sharma V, Khan H, Singh S, Singh TG. Intersecting molecular pathways in Synucleinopathies and Amyloidogenesis: Exploring shared mechanisms and therapeutic potential. Brain Res 2025; 1855:149568. [PMID: 40090446 DOI: 10.1016/j.brainres.2025.149568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/21/2025] [Accepted: 03/08/2025] [Indexed: 03/18/2025]
Abstract
Synucleinopathies and amyloidogenic disorders are the two most prevalent neurodegenerative conditions, characterized by progressive loss of neurons and aggregation of proteins in the central nervous system. Emerging evidence suggests that despite their distinct pathological hallmarks: α-synuclein in Parkinson's disease (PD) and amyloid-β in Alzheimer's disease (AD), both disorders share common molecular pathways, including oxidative stress, neuroinflammation, misfolding/aggregation of proteins and mitochondrial dysfunction. This review explores the molecular intersections between synucleinopathies and amyloidogenesis. Furthermore, this review highlights how these pathways drive neuronal loss and suggest that targeting them could provide broad therapeutic benefits. By elucidating the shared mechanisms between PD and AD, the multi-targeted therapies could address the underlying molecular disruptions common to both disorders, offering new avenues for effective disease-modifying treatments in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jashanpreet Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
2
|
Umeda T, Sakai A, Uekado R, Shigemori K, Nakajima R, Yamana K, Tomiyama T. Simply crushed zizyphi spinosi semen prevents neurodegenerative diseases and reverses age-related cognitive decline in mice. eLife 2025; 13:RP100737. [PMID: 40266679 PMCID: PMC12017767 DOI: 10.7554/elife.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Neurodegenerative diseases are age-related disorders characterized by the cerebral accumulation of amyloidogenic proteins, and cellular senescence underlies their pathogenesis. Thus, it is necessary for preventing these diseases to remove toxic proteins, repair damaged neurons, and suppress cellular senescence. As a source for such prophylactic agents, we selected zizyphi spinosi semen (ZSS), a medicinal herb used in traditional Chinese medicine. Oral administration of ZSS hot water extract ameliorated Aβ and tau pathology and cognitive impairment in mouse models of Alzheimer's disease and frontotemporal dementia. Non-extracted ZSS simple crush powder showed stronger effects than the extract and improved α-synuclein pathology and cognitive/motor function in Parkinson's disease model mice. Furthermore, when administered to normal aged mice, the ZSS powder suppressed cellular senescence, reduced DNA oxidation, promoted brain-derived neurotrophic factor expression and neurogenesis, and enhanced cognition to levels similar to those in young mice. The quantity of known active ingredients of ZSS, jujuboside A, jujuboside B, and spinosin was not proportional to the nootropic activity of ZSS. These results suggest that ZSS simple crush powder is a promising dietary material for the prevention of neurodegenerative diseases and brain aging.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of MedicineOsakaJapan
- Cerebro Pharma IncOsakaJapan
| | - Ayumi Sakai
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of MedicineOsakaJapan
- Cerebro Pharma IncOsakaJapan
| | - Rumi Uekado
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Keiko Shigemori
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Ryota Nakajima
- NOMON Co., Ltd, and New Business Development Unit, Teijin Ltd, Kasumigaseki Common Gate West TowerTokyoJapan
| | - Kei Yamana
- NOMON Co., Ltd, and New Business Development Unit, Teijin Ltd, Kasumigaseki Common Gate West TowerTokyoJapan
| | - Takami Tomiyama
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of MedicineOsakaJapan
- Cerebro Pharma IncOsakaJapan
| |
Collapse
|
3
|
Abbas K, Mustafa M, Alam M, Habib S, Ahmad W, Adnan M, Hassan MI, Usmani N. Multi-target approach to Alzheimer's disease prevention and treatment: antioxidant, anti-inflammatory, and amyloid- modulating mechanisms. Neurogenetics 2025; 26:39. [PMID: 40167826 DOI: 10.1007/s10048-025-00821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) plaque accumulation, neurofibrillary tangles, neuroinflammation, and progressive cognitive decline, posing a significant global health challenge. Growing evidence suggests that dietary polyphenols may reduce the risk and progression of AD through multifaceted neuroprotective mechanisms. Polyphenols regulate amyloid proteostasis by inhibiting β/γ-secretase activity, preventing Aβ aggregation, and enhancing clearance pathways. Their strong antioxidant properties neutralize reactive oxygen species, chelate redox-active metals, and activate cytoprotective enzymes via Nrf2 signaling. This review examines the potential therapeutic targets, signaling pathways, and molecular mechanisms by which dietary polyphenols exert neuroprotective effects in AD, focusing on their roles in modulating amyloid proteostasis, oxidative stress, neuroinflammation, and cerebrovascular health. Polyphenols mitigate neuroinflammation by suppressing NF-κB signaling and upregulating brain-derived neurotrophic factor, supporting neuroplasticity and neurogenesis. They also enhance cerebrovascular health by improving cerebral blood flow, maintaining blood-brain barrier integrity, and modulating angiogenesis. This review examines the molecular and cellular pathways through which polyphenols exert neuroprotective effects, focusing on their antioxidant, anti-inflammatory, and amyloid-modulating roles. We also discuss their influence on key AD pathologies, including Aβ deposition, tau hyperphosphorylation, oxidative stress, and neuroinflammation. Insights from clinical and preclinical studies highlight the potential of polyphenols in preventing or slowing AD progression. Future research should explore personalized dietary strategies that integrate genetic and lifestyle factors to optimize the neuroprotective effects of polyphenols.
Collapse
Affiliation(s)
- Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Waleem Ahmad
- Department of Medicine, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'Il, Ha'il, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Nazura Usmani
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
4
|
Hong JY, Jeon WJ, Kim H, Yeo C, Kim H, Lee YJ, Ha IH. Differential Gene Expression Analysis in a Lumbar Spinal Stenosis Rat Model via RNA Sequencing: Identification of Key Molecular Pathways and Therapeutic Insights. Biomedicines 2025; 13:192. [PMID: 39857775 PMCID: PMC11762803 DOI: 10.3390/biomedicines13010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Lumbar spinal stenosis (LSS) is a degenerative condition characterized by the narrowing of the spinal canal, resulting in chronic pain and impaired mobility. However, the molecular mechanisms underlying LSS remain unclear. In this study, we performed RNA sequencing (RNA-seq) to investigate differential gene expression in a rat LSS model and identify the key genes and pathways involved in its pathogenesis. METHODS We used bioinformatics analysis to identify significant alterations in gene expression between the LSS-induced and sham groups. RESULTS Pearson's correlation analysis demonstrated strongly consistent intragroup expression (r > 0.9), with distinct gene expression between the LSS and sham groups. A total of 113 differentially expressed genes (DEGs) were identified, including upregulated genes such as Slc47a1 and Prg4 and downregulated genes such as Higd1c and Mln. Functional enrichment analysis revealed that these DEGs included those involved in key biological processes, including synaptic plasticity, extracellular matrix organization, and hormonal regulation. Gene ontology analysis highlighted critical molecular functions such as mRNA binding and integrin binding, as well as cellular components such as contractile fibers and the extracellular matrix, which were significantly affected by LSS. CONCLUSIONS Our findings provide novel insights into the molecular mechanisms underlying LSS and offer potential avenues for the development of targeted therapies aimed at mitigating disease progression and improving patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea; (J.Y.H.); (W.-J.J.); (H.K.); (C.Y.); (H.K.); (Y.J.L.)
| |
Collapse
|
5
|
Vasegh S, Saadati H, Abedi A, Mostafalou S. The effect of azelaic acid on AlCl 3-induced neurocognitive impairments and molecular changes in the hippocampus of rats. Acta Neuropsychiatr 2024; 37:e43. [PMID: 39688203 DOI: 10.1017/neu.2024.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
OBJECTIVES Cognitive function plays a pivotal role in assessing an individual's quality of life. This research aimed to investigate how azelaic acid (AzA), a natural dicarboxylic acid with antioxidant and anti-inflammatory properties, affects aluminium chloride (AlCl3)-induced behavioural changes and biochemical alterations in the hippocampus of rats. METHODS Thirty-two male Wistar rats divided into four groups received distilled water, AzA 50 mg/kg, AlCl3 100 mg/kg and AzA plus AlCl3, respectively, by oral gavage for 6 weeks. Behavioural changes were evaluated using open-field maze, elevated plus maze, novel object recognition (NOR), passive avoidance task, and Morris water maze (MWM) tests. Also, malondialdehyde (MDA), carbonyl protein, tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), nuclear factor-kappa B (NF-κB), C/EBP homologous protein (CHOP), glycogen synthase kinase-3 beta (GSK-3β), brain-derived neurotrophic factor (BDNF) and acetylcholinesterase (AChE) activity were examined. RESULTS AzA significantly affected AlCl3-provoked anxiety-like behaviours and learning and memory impairments. It also reduced the toxic effect of AlCl3 on MDA, carbonyl protein, TNF-α, IL-1β, NF-κB and GSK-3β status; however, its beneficial effects on AlCl3-induced changes of CHOP, BDNF and AChE activity were not significant. CONCLUSION These findings disclosed that AzA could improve behavioural and cognitive function and almost limit the oxidative stress and neuroinflammation caused by AlCl3.
Collapse
Affiliation(s)
- Saba Vasegh
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hakimeh Saadati
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Abedi
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sara Mostafalou
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
6
|
Contaldi E, Basellini MJ, Mazzetti S, Calogero AM, Colombo A, Cereda V, Innocenti G, Ferri V, Calandrella D, Isaias IU, Pezzoli G, Cappelletti G. α-Synuclein Oligomers in Skin Biopsies Predict the Worsening of Cognitive Functions in Parkinson's Disease: A Single-Center Longitudinal Cohort Study. Int J Mol Sci 2024; 25:12176. [PMID: 39596242 PMCID: PMC11594322 DOI: 10.3390/ijms252212176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
α-synuclein oligomers within synaptic terminals of autonomic fibers of the skin reliably discriminate Parkinson's disease (PD) patients from healthy controls. Nonetheless, the prognostic role of oligomers for disease progression is unknown. We explored whether α-synuclein oligomers evaluated as proximity ligation assay (PLA) score may predict the worsening of cognitive functions in patients with Parkinson's disease. Thirty-four patients with PD and thirty-four healthy controls (HC), matched 1:1 for age and sex, were enrolled. Patients with PD underwent baseline skin biopsy and an assessment of cognitive domains including Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Clock Drawing Test, and Frontal Assessment Battery. At the last follow-up visit available, patients were either cognitively stable (PD-CS) or cognitively deteriorated (PD-CD). α-synuclein oligomers were quantified as PLA scores. Differences between groups were assessed, controlling for potential confounders. The relationship between skin biopsy measures and cognitive changes was explored using correlation and multivariable regression analyses. The discrimination power of the PLA score was assessed via ROC curve. To elucidate the relationship between skin biopsy and longitudinal cognitive measures, we conducted multivariable regression analyses using delta scores of cognitive tests (Δ) as dependent variables. We found that PD-CD had higher baseline PLA scores than PD-CS (p = 0.0003), and they were correctly identified in the ROC curve analysis (AUC = 0.872, p = 0.0003). Furthermore, ANCOVA analysis with Bonferroni correction, considering all groups (PD-CS, PD-CD, and HC), showed significant differences between PD-CS and PD-CD (p = 0.003), PD-CS and HC (p = 0.002), and PD-CD and HC (p < 0.001). In the regression model using ΔMMSE as the dependent variable, the PLA score was found to be a significant predictor (β = -0.441, p = 0.016). Similar results were observed when evaluating the model with ΔMoCA (β = -0.378, p = 0.042). In conclusion, patients with Parkinson's disease with higher α-synuclein burden in the peripheral nervous system may be more susceptible to cognitive decline.
Collapse
Affiliation(s)
- Elena Contaldi
- Parkinson Institute of Milan, ASST G. Pini-CTO, 20126 Milan, Italy; (A.C.); (V.C.); (G.I.); (V.F.); (D.C.); (I.U.I.); (G.P.)
| | - Milo Jarno Basellini
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (S.M.); (A.M.C.); (G.C.)
| | - Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (S.M.); (A.M.C.); (G.C.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy
| | - Alessandra Maria Calogero
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (S.M.); (A.M.C.); (G.C.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy
| | - Aurora Colombo
- Parkinson Institute of Milan, ASST G. Pini-CTO, 20126 Milan, Italy; (A.C.); (V.C.); (G.I.); (V.F.); (D.C.); (I.U.I.); (G.P.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy
| | - Viviana Cereda
- Parkinson Institute of Milan, ASST G. Pini-CTO, 20126 Milan, Italy; (A.C.); (V.C.); (G.I.); (V.F.); (D.C.); (I.U.I.); (G.P.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy
| | - Gionata Innocenti
- Parkinson Institute of Milan, ASST G. Pini-CTO, 20126 Milan, Italy; (A.C.); (V.C.); (G.I.); (V.F.); (D.C.); (I.U.I.); (G.P.)
| | - Valentina Ferri
- Parkinson Institute of Milan, ASST G. Pini-CTO, 20126 Milan, Italy; (A.C.); (V.C.); (G.I.); (V.F.); (D.C.); (I.U.I.); (G.P.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy
| | - Daniela Calandrella
- Parkinson Institute of Milan, ASST G. Pini-CTO, 20126 Milan, Italy; (A.C.); (V.C.); (G.I.); (V.F.); (D.C.); (I.U.I.); (G.P.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy
| | - Ioannis U. Isaias
- Parkinson Institute of Milan, ASST G. Pini-CTO, 20126 Milan, Italy; (A.C.); (V.C.); (G.I.); (V.F.); (D.C.); (I.U.I.); (G.P.)
- Department of Neurology, University Hospital of Würzburg and Julius-Maximilian-University of Würzburg, 97080 Würzburg, Germany
| | - Gianni Pezzoli
- Parkinson Institute of Milan, ASST G. Pini-CTO, 20126 Milan, Italy; (A.C.); (V.C.); (G.I.); (V.F.); (D.C.); (I.U.I.); (G.P.)
- Fondazione Grigioni per il Morbo di Parkinson, 20125 Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.J.B.); (S.M.); (A.M.C.); (G.C.)
| |
Collapse
|
7
|
Umeda T, Sakai A, Shigemori K, Nakata K, Nakajima R, Yamana K, Tomiyama T. New Value of Acorus tatarinowii/ gramineus Leaves as a Dietary Source for Dementia Prevention. Nutrients 2024; 16:1589. [PMID: 38892521 PMCID: PMC11175135 DOI: 10.3390/nu16111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The rhizomes of Acorus tatarinowii Schott and Acorus gramineus Solander are widely used for treating amnesia in traditional Chinese medicine. In contrast, their leaves are usually discarded without their medicinal properties being known. Here, we found that the hot water extract of leaves improved cognition and tau pathology in model mice of frontotemporal dementia, similar to or even better than that of rhizomes. To explore the optimal method of processing, we made three preparations from dried leaves: hot water extract, extraction residue, and non-extracted simple crush powder. Among them, the simple crush powder had the strongest effect on tauopathy in mice. The crush powder also ameliorated Aβ and α-synuclein pathologies and restored cognition in mouse models of Alzheimer's disease and dementia with Lewy bodies. These findings suggest the potential of Acorus tatarinowii/gramineus leaves as a dietary source for dementia prevention and reveal that simple crushing is a better way to maximize their efficacy.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
- Cerebro Pharma Inc., 4-5-6-3F Minamikyuhojimachi, Chuo-ku, Osaka 541-0058, Japan
| | - Ayumi Sakai
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
- Cerebro Pharma Inc., 4-5-6-3F Minamikyuhojimachi, Chuo-ku, Osaka 541-0058, Japan
| | - Keiko Shigemori
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
| | - Kunio Nakata
- NOMON Co., Ltd., New Business Development Unit, Teijin Ltd., Kasumigaseki Common Gate West Tower 3-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8585, Japan; (K.N.); (R.N.); (K.Y.)
| | - Ryota Nakajima
- NOMON Co., Ltd., New Business Development Unit, Teijin Ltd., Kasumigaseki Common Gate West Tower 3-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8585, Japan; (K.N.); (R.N.); (K.Y.)
| | - Kei Yamana
- NOMON Co., Ltd., New Business Development Unit, Teijin Ltd., Kasumigaseki Common Gate West Tower 3-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8585, Japan; (K.N.); (R.N.); (K.Y.)
| | - Takami Tomiyama
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; (T.U.)
- Cerebro Pharma Inc., 4-5-6-3F Minamikyuhojimachi, Chuo-ku, Osaka 541-0058, Japan
| |
Collapse
|
8
|
Umeda T, Shigemori K, Uekado R, Matsuda K, Tomiyama T. Hawaiian native herb Mamaki prevents dementia by ameliorating neuropathology and repairing neurons in four different mouse models of neurodegenerative diseases. GeroScience 2024; 46:1971-1987. [PMID: 37783918 PMCID: PMC10828292 DOI: 10.1007/s11357-023-00950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023] Open
Abstract
Neurodegenerative diseases including Alzheimer's disease, frontotemporal dementia, and dementia with Lewy bodies are age-related disorders and the main cause of dementia. They are characterized by the cerebral accumulation of Aβ, tau, α-synuclein, and TDP-43. Because the accumulation begins decades before disease onset, treatment should be started in the preclinical stage. Such intervention would be long-lasting, and therefore, prophylactic agents should be safe, non-invasively taken by the patients, and inexpensive. In addition, the agents should be broadly effective against etiologic proteins and capable of repairing neurons damaged by toxic oligomers. These requirements are difficult to meet with single-ingredient pharmaceuticals but may be feasible by taking proper diets composed of multiple ingredients. As a source of such diets, we focused on the Hawaiian native herb Mamaki. From its dried leaves and fruits, we made three preparations: hot water extract of the leaves, non-extracted simple crush powder of the leaves, and simple crush powder of the fruits, and examined their effects on the cognitive function and neuropathologies in four different mouse models of neurodegenerative dementia. Hot water extract of the leaves attenuated neuropathologies, restored synaptophysin levels, suppressed microglial activation, and improved memory when orally administered for 1 month. Simply crushed leaf powder showed a higher efficacy, but simply crushed fruit powder displayed the strongest effects. Moreover, the fruit powder significantly enhanced the levels of brain-derived neurotrophic factor expression and neurogenesis, indicating its ability to repair neurons. These results suggest that crushed Mamaki leaves and fruits are promising sources of dementia-preventive diets.
Collapse
Affiliation(s)
- Tomohiro Umeda
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Osaka, Abeno-ku, 545-8585, Japan
- Cerebro Pharma Inc, 4-5-6-3F Minamikyuhojimachi, Osaka, Chuo-ku, 541-0058, Japan
| | - Keiko Shigemori
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Osaka, Abeno-ku, 545-8585, Japan
| | - Rumi Uekado
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Osaka, Abeno-ku, 545-8585, Japan
| | - Kazunori Matsuda
- Cerebro Pharma Inc, 4-5-6-3F Minamikyuhojimachi, Osaka, Chuo-ku, 541-0058, Japan
| | - Takami Tomiyama
- Department of Translational Neuroscience, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Osaka, Abeno-ku, 545-8585, Japan.
- Cerebro Pharma Inc, 4-5-6-3F Minamikyuhojimachi, Osaka, Chuo-ku, 541-0058, Japan.
| |
Collapse
|
9
|
Mota SI, Fão L, Coelho P, Rego AC. Uncovering the Early Events Associated with Oligomeric Aβ-Induced Src Activation. Antioxidants (Basel) 2023; 12:1770. [PMID: 37760073 PMCID: PMC10525724 DOI: 10.3390/antiox12091770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Soluble Aβ1-42 oligomers (AβO) are formed in the early stages of Alzheimer's disease (AD) and were previously shown to trigger enhanced Ca2+ levels and mitochondrial dysfunction via the activation of N-methyl-D-aspartate receptors (NMDAR). Src kinase is a ubiquitous redox-sensitive non-receptor tyrosine kinase involved in the regulation of several cellular processes, which was demonstrated to have a reciprocal interaction towards NMDAR activation. However, little is known about the early-stage mechanisms associated with AβO-induced neurodysfunction involving Src. Thus, in this work, we analysed the influence of brief exposure to oligomeric Aβ1-42 on Src activation and related mechanisms involving mitochondria and redox changes in mature primary rat hippocampal neurons. Data show that brief exposure to AβO induce H2O2-dependent Src activation involving different cellular events, including NMDAR activation and mediated intracellular Ca2+ rise, enhanced cytosolic and subsequent mitochondrial H2O2 levels, accompanied by mild mitochondrial fragmentation. Interestingly, these effects were prevented by Src inhibition, suggesting a feedforward modulation. The current study supports a relevant role for Src kinase activation in promoting the loss of postsynaptic glutamatergic synapse homeostasis involving cytosolic and mitochondrial ROS generation after brief exposure to AβO. Therefore, restoring Src activity can constitute a protective strategy for mitochondria and related hippocampal glutamatergic synapses.
Collapse
Affiliation(s)
- Sandra I. Mota
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (S.I.M.); (L.F.); (P.C.)
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Lígia Fão
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (S.I.M.); (L.F.); (P.C.)
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Patrícia Coelho
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (S.I.M.); (L.F.); (P.C.)
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - A. Cristina Rego
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (S.I.M.); (L.F.); (P.C.)
- CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| |
Collapse
|
10
|
Woodfield A, Gonzales T, Helmerhorst E, Laws S, Newsholme P, Porter T, Verdile G. Current Insights on the Use of Insulin and the Potential Use of Insulin Mimetics in Targeting Insulin Signalling in Alzheimer's Disease. Int J Mol Sci 2022; 23:15811. [PMID: 36555450 PMCID: PMC9779379 DOI: 10.3390/ijms232415811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are chronic diseases that share several pathological mechanisms, including insulin resistance and impaired insulin signalling. Their shared features have prompted the evaluation of the drugs used to manage diabetes for the treatment of AD. Insulin delivery itself has been utilized, with promising effects, in improving cognition and reducing AD related neuropathology. The most recent clinical trial involving intranasal insulin reported no slowing of cognitive decline; however, several factors may have impacted the trial outcomes. Long-acting and rapid-acting insulin analogues have also been evaluated within the context of AD with a lack of consistent outcomes. This narrative review provided insight into how targeting insulin signalling in the brain has potential as a therapeutic target for AD and provided a detailed update on the efficacy of insulin, its analogues and the outcomes of human clinical trials. We also discussed the current evidence that warrants the further investigation of the use of the mimetics of insulin for AD. These small molecules may provide a modifiable alternative to insulin, aiding in developing drugs that selectively target insulin signalling in the brain with the aim to attenuate cognitive dysfunction and AD pathologies.
Collapse
Affiliation(s)
- Amy Woodfield
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Tatiana Gonzales
- Curtin Medical School, Curtin University, Bentley 6102, Australia
| | - Erik Helmerhorst
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Simon Laws
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Philip Newsholme
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Tenielle Porter
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Giuseppe Verdile
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| |
Collapse
|
11
|
Di Scala C, Armstrong N, Chahinian H, Chabrière E, Fantini J, Yahi N. AmyP53, a Therapeutic Peptide Candidate for the Treatment of Alzheimer’s and Parkinson’s Disease: Safety, Stability, Pharmacokinetics Parameters and Nose-to Brain Delivery. Int J Mol Sci 2022; 23:ijms232113383. [PMID: 36362170 PMCID: PMC9654333 DOI: 10.3390/ijms232113383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Neurodegenerative disorders are a major public health issue. Despite decades of research efforts, we are still seeking an efficient cure for these pathologies. The initial paradigm of large aggregates of amyloid proteins (amyloid plaques, Lewis bodies) as the root cause of Alzheimer’s and Parkinson’s diseases has been mostly dismissed. Instead, membrane-bound oligomers forming Ca2+-permeable amyloid pores are now considered appropriate targets for these diseases. Over the last 20 years, our group deciphered the molecular mechanisms of amyloid pore formation, which appeared to involve a common pathway for all amyloid proteins, including Aβ (Alzheimer) and α-synuclein (Parkinson). We then designed a short peptide (AmyP53), which prevents amyloid pore formation by targeting gangliosides, the plasma membrane receptors of amyloid proteins. Herein, we show that aqueous solutions of AmyP53 are remarkably stable upon storage at temperatures up to 45 °C for several months. AmyP53 appeared to be more stable in whole blood than in plasma. Pharmacokinetics studies in rats demonstrated that the peptide can rapidly and safely reach the brain after intranasal administration. The data suggest both the direct transport of AmyP53 via the olfactory bulb (and/or the trigeminal nerve) and an indirect transport via the circulation and the blood–brain barrier. In vitro experiments confirmed that AmyP53 is as active as cargo peptides in crossing the blood–brain barrier, consistent with its amino acid sequence specificities and physicochemical properties. Overall, these data open a route for the use of a nasal spray formulation of AmyP53 for the prevention and/or treatment of Alzheimer’s and Parkinson’s diseases in future clinical trials in humans.
Collapse
Affiliation(s)
- Coralie Di Scala
- Neuroscience Center—HiLIFE, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Nicholas Armstrong
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
| | - Henri Chahinian
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| | - Eric Chabrière
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| | - Nouara Yahi
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
- Correspondence:
| |
Collapse
|
12
|
Meldolesi J. News about Structure and Function of Synapses: Health and Diseases. Biomedicines 2022; 10:2596. [PMID: 36289858 PMCID: PMC9599899 DOI: 10.3390/biomedicines10102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
During the last century, synapses have been intensely investigated as the most interesting sites of neuroscience development [...].
Collapse
Affiliation(s)
- Jacopo Meldolesi
- San Raffaele Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy;
- CNR Institute of Neuroscience, Milan-Bicocca University, 20132 Milan, Italy
| |
Collapse
|