1
|
Moshtaghioon S, Elahi M, Ebrahim Soltani Z, Ahmadi E, Nabian MH. MicroRNA regulation in neural tube defects: Insights into pathogenesis and potential therapeutic targets. Gene 2025; 945:149311. [PMID: 39914791 DOI: 10.1016/j.gene.2025.149311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/30/2024] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
Neural tube defects (NTDs) represent a significant burden on global pediatric health, contributing to high rates of infant mortality and morbidity. Despite extensive research into their etiology, NTDs continue to pose challenges in diagnosis and treatment. MicroRNAs (miRNAs) have emerged as promising candidates for understanding the molecular mechanisms underlying NTDs and potentially offering avenues for improved diagnosis and therapeutic intervention. This review explores the multifaceted roles of miRNAs in the context of NTD pathogenesis. Studies have identified specific miRNA profiles associated with NTDs, providing insights into their potential as diagnostic biomarkers. Furthermore, dysregulation of certain miRNAs has been implicated in the pathophysiology of NTDs, highlighting their role as potential therapeutic targets. Additionally, animal models and deep sequencing approaches have expanded our understanding of the diverse miRNA expression patterns associated with NTDs. By unraveling the intricate molecular mechanisms underlying NTD pathogenesis, miRNAs offer promising avenues for early detection and intervention, ultimately improving outcomes for affected individuals.
Collapse
Affiliation(s)
- Seyedali Moshtaghioon
- Department of Orthopaedic and Trauma Surgery Dr. Shariaty Hospital Tehran University Medical Science Tehran Iran
| | - Mohammad Elahi
- Center for Orthopedic Trans-disciplinary Applied Research Tehran University of Medical Science Tehran Iran
| | | | - Elham Ahmadi
- School of Medicine Tehran University Medical Science Tehran Iran
| | - Mohammad Hossein Nabian
- Center for Orthopedic Trans-disciplinary Applied Research Tehran University of Medical Science Tehran Iran
| |
Collapse
|
2
|
Shiwal A, Nibrad D, Tadas M, Katariya R, Kale M, Wankhede N, Kotagale N, Umekar M, Taksande B. Polyamines signalling pathway: A key player in unveiling the molecular mechanisms underlying Huntington's disease. Neuroscience 2025; 570:213-224. [PMID: 39986431 DOI: 10.1016/j.neuroscience.2025.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Polyaminesare essential organic cations found in all eukaryotic cells and play an important role in many cellular processes including growth, differentiation, andneuroprotection. This review explores the complex relationship between polyamine signaling and Huntington's disease (HD), an autosomal-dominant neurodegenerative disorder characterized by the progressive degeneration of medium-spiny neurons in the striatum and cortex due to mutations in the huntingtin gene. We provide a comprehensive overview of how polyamines, specificallyputrescine,spermidine, andspermine, regulate important cellular functions such as gene expression, protein synthesis, membrane stability, and ion channel regulation with implications for HD. Dysfunction in polyamine metabolism in HD, reveals how changes in these molecules promote oxidative stress, mitochondrial dysfunction, andexcitotoxicity. Importantly, polyamines interact with mutanthuntingtin protein (mHTT) to affect its aggregationand neurotoxicity. This effect may contribute to the pathophysiological mechanisms underlying HD, suggesting that polyamines may act as potential biomarkers of disease progression. Additionally, we discuss the therapeutic implications of targeting the polyamine signaling pathway to alleviate HD symptoms. By enhancing autophagy and modulating neurotransmitter systems, polyamines mayprovideneuroprotectionagainstmHTT-inducedtoxicity. Moreover, the present review provides new insight into the role of polyamines in the pathogenesis of HDand suggests that regulation of polyamine metabolism may represent a promising therapy to slow the disease progression. Besides this, the review highlights the need for further investigation of the diverse roles of polyamines in neurodegenerative diseases, including HD, paving the way for novel interventions to improve cellular homeostasis andpatient outcomes.
Collapse
Affiliation(s)
- Amit Shiwal
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Dhanshree Nibrad
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Manasi Tadas
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Nitu Wankhede
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, MS 444 604, India
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS 441 002, India.
| |
Collapse
|
3
|
Kothari M, Wanjari A, Shaikh SM, Tantia P, Waghmare BV, Parepalli A, Hamdulay KF, Nelakuditi M. A Comprehensive Review on Understanding Magnesium Disorders: Pathophysiology, Clinical Manifestations, and Management Strategies. Cureus 2024; 16:e68385. [PMID: 39355467 PMCID: PMC11444808 DOI: 10.7759/cureus.68385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 10/03/2024] Open
Abstract
Magnesium is vital in a broad spectrum of physiological processes, including enzyme activity, energy production, and neuromuscular function. Despite its crucial role, magnesium disorders - comprising both deficiency (hypomagnesemia) and excess (hypermagnesemia) - are frequently underrecognized and inadequately managed in clinical practice. Magnesium deficiency is widespread, particularly among populations with chronic illnesses, the elderly, and those experiencing malnutrition, often leading to significant neuromuscular, cardiovascular, and metabolic complications. Conversely, hypermagnesemia, though less common, poses serious risks, especially in individuals with impaired renal function or those receiving high doses of magnesium supplements or medications. This review comprehensively examines magnesium disorders, detailing their pathophysiology, clinical manifestations, and management strategies. It highlights the essential functions of magnesium in maintaining cellular integrity, cardiovascular health, and bone structure and discusses the global prevalence and risk factors associated with magnesium imbalances. By offering insights into the current understanding of magnesium homeostasis and its disruptions, this review aims to enhance the awareness and treatment of magnesium-related conditions, ultimately improving patient outcomes across diverse clinical settings.
Collapse
Affiliation(s)
- Manjeet Kothari
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anil Wanjari
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Suhail M Shaikh
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Parav Tantia
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Bhavana V Waghmare
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Avinash Parepalli
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Khadija F Hamdulay
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Manikanta Nelakuditi
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
4
|
Alberto-Silva C, da Silva BR, da Silva JCA, da Cunha e Silva FA, Kodama RT, da Silva WD, Costa MS, Portaro FCV. Small Structural Differences in Proline-Rich Decapeptides Have Specific Effects on Oxidative Stress-Induced Neurotoxicity and L-Arginine Generation by Arginosuccinate Synthase. Pharmaceuticals (Basel) 2024; 17:931. [PMID: 39065782 PMCID: PMC11279908 DOI: 10.3390/ph17070931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION The proline-rich decapeptide 10c (Bj-PRO-10c; ENWPHPQIPP) from the Bothrops jararaca snake modulates argininosuccinate synthetase (AsS) activity to stimulate L-arginine metabolite production and neuroprotection in the SH-SY5Y cell line. The relationships between structure, interactions with AsS, and neuroprotection are little known. We evaluated the neuroprotective effects of Bj-PRO-10c and three other PROs (Bn-PRO-10a, METHODS Cell integrity, metabolic activity, reactive oxygen species (ROS) production, and arginase activity were examined after 4 h of PRO pre-treatment and 20 h of H2O2-induced damage. RESULTS Only Bn-PRO-10a-MK and Bn-PRO-10c restored cell integrity and arginase function under oxidative stress settings, but they did not reduce ROS or cell metabolism. The MK dipeptide in Bn-PRO-10a-MK and valine (V8) in Bn-PRO-10c are important to these effects when compared to Bn-PRO-10a. Bj-PRO-10c is not neuroprotective in PC12 cells, perhaps because of their limited NMDA-type glutamate receptor activity. The PROs interaction analysis on AsS activation can be rated as follows: Bj-PRO-10c > Bn-PRO-10c > Bn-PRO-10a-MK > Bn-PRO-10a. The structure of PROs and their correlations with enzyme activity revealed that histidine (H5) and glutamine (Q7) in Bj-PRO-10c potentiated their affinity for AsS. CONCLUSIONS Our investigation provides the first insights into the structure and molecular interactions of PROs with AsS, which could possibly further their neuropharmacological applications.
Collapse
Affiliation(s)
- Carlos Alberto-Silva
- Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil; (B.R.d.S.); (J.C.A.d.S.); (F.A.d.C.e.S.)
| | - Brenda Rufino da Silva
- Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil; (B.R.d.S.); (J.C.A.d.S.); (F.A.d.C.e.S.)
| | - Julio Cezar Araujo da Silva
- Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil; (B.R.d.S.); (J.C.A.d.S.); (F.A.d.C.e.S.)
| | - Felipe Assumpção da Cunha e Silva
- Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do Campo 09606-070, SP, Brazil; (B.R.d.S.); (J.C.A.d.S.); (F.A.d.C.e.S.)
| | - Roberto Tadashi Kodama
- Structure and Functions of Biomolecules Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (R.T.K.); (F.C.V.P.)
| | - Wilmar Dias da Silva
- Laboratory of Immunochemistry, Butantan Institute, São Paulo 05503-900, SP, Brazil;
| | - Maricilia Silva Costa
- Instituto de Pesquisa & Desenvolvimento—IP&D, Universidade do Vale do Paraíba—UNIVAP, Av. Shishima Hifumi, 2911, São José dos Campos 12244-390, SP, Brazil;
| | - Fernanda Calheta Vieira Portaro
- Structure and Functions of Biomolecules Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (R.T.K.); (F.C.V.P.)
| |
Collapse
|
5
|
Rossi MN, Fiorucci C, Mariottini P, Cervelli M. Unveiling the hidden players: noncoding RNAs orchestrating polyamine metabolism in disease. Cell Biosci 2024; 14:84. [PMID: 38918813 PMCID: PMC11202255 DOI: 10.1186/s13578-024-01235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/19/2024] [Indexed: 06/27/2024] Open
Abstract
Polyamines (PA) are polycations with pleiotropic functions in cellular physiology and pathology. In particular, PA have been involved in the regulation of cell homeostasis and proliferation participating in the control of fundamental processes like DNA transcription, RNA translation, protein hypusination, autophagy and modulation of ion channels. Indeed, their dysregulation has been associated to inflammation, oxidative stress, neurodegeneration and cancer progression. Accordingly, PA intracellular levels, derived from the balance between uptake, biosynthesis, and catabolism, need to be tightly regulated. Among the mechanisms that fine-tune PA metabolic enzymes, emerging findings highlight the importance of noncoding RNAs (ncRNAs). Among the ncRNAs, microRNA, long noncoding RNA and circRNA are the most studied as regulators of gene expression and mRNA metabolism and their alteration have been frequently reported in pathological conditions, such as cancer progression and brain diseases. In this review, we will discuss the role of ncRNAs in the regulation of PA genes, with a particular emphasis on the changes of this modulation observed in health disorders.
Collapse
Affiliation(s)
| | | | - Paolo Mariottini
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy
| | - Manuela Cervelli
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy.
| |
Collapse
|
6
|
Zayas-Santiago A, Malpica-Nieves CJ, Ríos DS, Díaz-García A, Vázquez PN, Santiago JM, Rivera-Aponte DE, Veh RW, Méndez-González M, Eaton M, Skatchkov SN. Spermidine Synthase Localization in Retinal Layers: Early Age Changes. Int J Mol Sci 2024; 25:6458. [PMID: 38928162 PMCID: PMC11204015 DOI: 10.3390/ijms25126458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Polyamine (PA) spermidine (SPD) plays a crucial role in aging. Since SPD accumulates in glial cells, particularly in Müller retinal cells (MCs), the expression of the SPD-synthesizing enzyme spermidine synthase (SpdS) in Müller glia and age-dependent SpdS activity are not known. We used immunocytochemistry, Western blot (WB), and image analysis on rat retinae at postnatal days 3, 21, and 120. The anti-glutamine synthetase (GS) antibody was used to identify glial cells. In the neonatal retina (postnatal day 3 (P3)), SpdS was expressed in almost all progenitor cells in the neuroblast. However, by day 21 (P21), the SpdS label was pronouncedly expressed in multiple neurons, while GS labels were observed only in radial Müller glial cells. During early cell adulthood, at postnatal day 120 (P120), SpdS was observed solely in ganglion cells and a few other neurons. Western blot and semi-quantitative analyses of SpdS labeling showed a dramatic decrease in SpdS at P21 and P120 compared to P3. In conclusion, the redistribution of SpdS with aging indicates that SPD is first synthesized in all progenitor cells and then later in neurons, but not in glia. However, MCs take up and accumulate SPD, regardless of the age-associated decrease in SPD synthesis in neurons.
Collapse
Affiliation(s)
- Astrid Zayas-Santiago
- Department of Pathology and Laboratory Medicine, Universidad Central del Caribe, Bayamón, PR 00956, USA;
| | | | - David S. Ríos
- College of Science and Health Professions, Universidad Central de Bayamón, Bayamón, PR 00960, USA;
| | - Amanda Díaz-García
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA; (A.D.-G.); (D.E.R.-A.); (M.E.)
| | - Paola N. Vázquez
- Department of Natural Sciences, University of Puerto Rico-Carolina, Carolina, PR 00984, USA; (P.N.V.); (J.M.S.)
| | - José M. Santiago
- Department of Natural Sciences, University of Puerto Rico-Carolina, Carolina, PR 00984, USA; (P.N.V.); (J.M.S.)
| | - David E. Rivera-Aponte
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA; (A.D.-G.); (D.E.R.-A.); (M.E.)
| | - Rüdiger W. Veh
- Charité–Universitätsmedizin Berlin, Institut für Zell- und Neurobiologie, Centrum 2, Charitéplatz 1, D-10117 Berlin, Germany;
| | | | - Misty Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA; (A.D.-G.); (D.E.R.-A.); (M.E.)
| | - Serguei N. Skatchkov
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA; (A.D.-G.); (D.E.R.-A.); (M.E.)
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
| |
Collapse
|
7
|
Lai S, Shiraishi H, Sebastian WA, Shimizu N, Umeda R, Ikeuchi M, Kiyota K, Takeno T, Miyazaki S, Yano S, Shimada T, Yoshimura A, Hanada R, Hanada T. Effect of nonsense-mediated mRNA decay factor SMG9 deficiency on premature aging in zebrafish. Commun Biol 2024; 7:654. [PMID: 38806677 PMCID: PMC11133409 DOI: 10.1038/s42003-024-06356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
SMG9 is an essential component of the nonsense-mediated mRNA decay (NMD) machinery, a quality control mechanism that selectively degrades aberrant transcripts. Mutations in SMG9 are associated with heart and brain malformation syndrome (HBMS). However, the molecular mechanism underlying HBMS remains unclear. We generated smg9 mutant zebrafish (smg9oi7/oi7) that have a lifespan of approximately 6 months or longer, allowing for analysis of the in vivo function of Smg9 in adults in more detail. smg9oi7/oi7 zebrafish display congenital brain abnormalities and reduced cardiac contraction. Additionally, smg9oi7/oi7 zebrafish exhibit a premature aging phenotype. Analysis of NMD target mRNAs shows a trend toward increased mRNA levels in smg9oi7/oi7 zebrafish. Spermidine oxidase (Smox) is increased in smg9oi7/oi7 zebrafish, resulting in the accumulation of byproducts, reactive oxygen species, and acrolein. The accumulation of smox mRNA due to NMD dysregulation caused by Smg9 deficiency leads to increased oxidative stress, resulting in premature aging.
Collapse
Affiliation(s)
- Shaohong Lai
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Hiroshi Shiraishi
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | | | - Nobuyuki Shimizu
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Ryohei Umeda
- Department of Neurophysiology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Mayo Ikeuchi
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Kyoko Kiyota
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Takashi Takeno
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Shuya Miyazaki
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Shinji Yano
- Institute for Research Management, Oita University, Yufu, Oita, Japan
| | - Tatsuo Shimada
- Oita Medical Technology School, Japan College of Judo-Therapy, Acupuncture & Moxibustion Therapy, Oita, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan.
| |
Collapse
|
8
|
Katariya RA, Sammeta SS, Kale MB, Kotagale NR, Umekar MJ, Taksande BG. Agmatine as a novel intervention for Alzheimer's disease: Pathological insights and cognitive benefits. Ageing Res Rev 2024; 96:102269. [PMID: 38479477 DOI: 10.1016/j.arr.2024.102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and a significant societal burden. Despite extensive research and efforts of the multidisciplinary scientific community, to date, there is no cure for this debilitating disease. Moreover, the existing pharmacotherapy for AD only provides symptomatic support and does not modify the course of the illness or halt the disease progression. This is a significant limitation as the underlying pathology of the disease continues to progress leading to the deterioration of cognitive functions over time. In this milieu, there is a growing need for the development of new and more efficacious treatments for AD. Agmatine, a naturally occurring molecule derived from L-arginine, has emerged as a potential therapeutic agent for AD. Besides this, agmatine has been shown to modulate amyloid beta (Aβ) production, aggregation, and clearance, key processes implicated in AD pathogenesis. It also exerts neuroprotective effects, modulates neurotransmitter systems, enhances synaptic plasticity, and stimulates neurogenesis. Furthermore, preclinical and clinical studies have provided evidence supporting the cognition-enhancing effects of agmatine in AD. Therefore, this review article explores the promising role of agmatine in AD pathology and cognitive function. However, several limitations and challenges exist, including the need for large-scale clinical trials, optimal dosing, and treatment duration. Future research should focus on mechanistic investigations, biomarker studies, and personalized medicine approaches to fully understand and optimize the therapeutic potential of agmatine. Augmenting the use of agmatine may offer a novel approach to address the unmet medical need in AD and provide cognitive enhancement and disease modification for individuals affected by this disease.
Collapse
Affiliation(s)
- Raj A Katariya
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Shivkumar S Sammeta
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Nandkishor R Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, Maharashtra 444604, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
9
|
Alberto-Silva C, Pantaleão HQ, da Silva BR, da Silva JCA, Echeverry MB. Activation of M1 muscarinic acetylcholine receptors by proline-rich oligopeptide 7a (<EDGPIPP) from Bothrops jararaca snake venom rescues oxidative stress-induced neurotoxicity in PC12 cells. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230043. [PMID: 38362565 PMCID: PMC10868729 DOI: 10.1590/1678-9199-jvatitd-2023-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024] Open
Abstract
Background The bioactive peptides derived from snake venoms of the Viperidae family species have been promising as therapeutic candidates for neuroprotection due to their ability to prevent neuronal cell loss, injury, and death. Therefore, this study aimed to evaluate the cytoprotective effects of a synthetic proline-rich oligopeptide 7a (PRO-7a; Methods Both cells were pre-treated for four hours with different concentrations of PRO-7a, submitted to H2O2-induced damage for 20 h, and then the oxidative stress markers were analyzed. Also, two independent neuroprotective mechanisms were investigated: a) L-arginine metabolite generation via argininosuccinate synthetase (AsS) activity regulation to produce agmatine or polyamines with neuroprotective properties; b) M1 mAChR receptor subtype activation pathway to reduce oxidative stress and neuron injury. Results PRO-7a was not cytoprotective in C6 cells, but potentiated the H2O2-induced damage to cell integrity at a concentration lower than 0.38 μM. However, PRO-7a at 1.56 µM, on the other hand, modified H2O2-induced toxicity in PC12 cells by restoring cell integrity, mitochondrial metabolism, ROS generation, and arginase indirect activity. The α-Methyl-DL-aspartic acid (MDLA) and L-NΩ-Nitroarginine methyl ester (L-Name), specific inhibitors of AsS and nitric oxide synthase (NOS), which catalyzes the synthesis of polyamines and NO from L-arginine, did not suppress PRO-7a-mediated cytoprotection against oxidative stress. It suggested that its mechanism is independent of the production of L-arginine metabolites with neuroprotective properties by increased AsS activity. On the other hand, the neuroprotective effect of PRO-7a was blocked in the presence of dicyclomine hydrochloride (DCH), an M1 mAChR antagonist. Conclusions For the first time, this work provides evidence that PRO-7a-induced neuroprotection seems to be mediated through M1 mAChR activation in PC12 cells, which reduces oxidative stress independently of AsS activity and L-arginine bioavailability.
Collapse
Affiliation(s)
- Carlos Alberto-Silva
- Natural and Humanities Sciences Center (CCNH), Experimental
Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do
Campo, SP, Brazil
| | - Halyne Queiroz Pantaleão
- Natural and Humanities Sciences Center (CCNH), Experimental
Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do
Campo, SP, Brazil
| | - Brenda Rufino da Silva
- Natural and Humanities Sciences Center (CCNH), Experimental
Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do
Campo, SP, Brazil
| | - Julio Cezar Araujo da Silva
- Natural and Humanities Sciences Center (CCNH), Experimental
Morphophysiology Laboratory, Federal University of ABC (UFABC), São Bernardo do
Campo, SP, Brazil
| | - Marcela Bermudez Echeverry
- Center for Mathematics, Computation and Cognition (CMCC), Federal
University of ABC, São Bernardo do Campo, SP, Brazil
| |
Collapse
|
10
|
Jimenez Gutierrez GE, Borbolla Jiménez FV, Muñoz LG, Tapia Guerrero YS, Murillo Melo NM, Cristóbal-Luna JM, Leyva Garcia N, Cordero-Martínez J, Magaña JJ. The Molecular Role of Polyamines in Age-Related Diseases: An Update. Int J Mol Sci 2023; 24:16469. [PMID: 38003659 PMCID: PMC10671757 DOI: 10.3390/ijms242216469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Polyamines (Pas) are short molecules that exhibit two or three amine groups that are positively charged at a physiological pH. These small molecules are present in high concentrations in a wide variety of organisms and tissues, suggesting that they play an important role in cellular physiology. Polyamines include spermine, spermidine, and putrescine, which play important roles in age-related diseases that have not been completely elucidated. Aging is a natural process, defined as the time-related deterioration of the physiological functions; it is considered a risk factor for degenerative diseases such as cardiovascular, neurodegenerative, and musculoskeletal diseases; arthritis; and even cancer. In this review, we provide a new perspective on the participation of Pas in the cellular and molecular processes related to age-related diseases, focusing our attention on important degenerative diseases such as Alzheimerߣs disease, Parkinsonߣs disease, osteoarthritis, sarcopenia, and osteoporosis. This new perspective leads us to propose that Pas function as novel biomarkers for age-related diseases, with the main purpose of achieving new molecular alternatives for healthier aging.
Collapse
Affiliation(s)
- Guadalupe Elizabeth Jimenez Gutierrez
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Fabiola V. Borbolla Jiménez
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Luis G. Muñoz
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
| | - Yessica Sarai Tapia Guerrero
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
| | - Nadia Mireya Murillo Melo
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
| | - José Melesio Cristóbal-Luna
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - Norberto Leyva Garcia
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
| | - Joaquín Cordero-Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico; (G.E.J.G.); (F.V.B.J.); (L.G.M.); (Y.S.T.G.); (N.M.M.M.); (N.L.G.)
- Department of Bioengineering, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, Mexico City 14380, Mexico
| |
Collapse
|
11
|
Provenzano F, Torazza C, Bonifacino T, Bonanno G, Milanese M. The Key Role of Astrocytes in Amyotrophic Lateral Sclerosis and Their Commitment to Glutamate Excitotoxicity. Int J Mol Sci 2023; 24:15430. [PMID: 37895110 PMCID: PMC10607805 DOI: 10.3390/ijms242015430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
In the last two decades, there has been increasing evidence supporting non-neuronal cells as active contributors to neurodegenerative disorders. Among glial cells, astrocytes play a pivotal role in driving amyotrophic lateral sclerosis (ALS) progression, leading the scientific community to focus on the "astrocytic signature" in ALS. Here, we summarized the main pathological mechanisms characterizing astrocyte contribution to MN damage and ALS progression, such as neuroinflammation, mitochondrial dysfunction, oxidative stress, energy metabolism impairment, miRNAs and extracellular vesicles contribution, autophagy dysfunction, protein misfolding, and altered neurotrophic factor release. Since glutamate excitotoxicity is one of the most relevant ALS features, we focused on the specific contribution of ALS astrocytes in this aspect, highlighting the known or potential molecular mechanisms by which astrocytes participate in increasing the extracellular glutamate level in ALS and, conversely, undergo the toxic effect of the excessive glutamate. In this scenario, astrocytes can behave as "producers" and "targets" of the high extracellular glutamate levels, going through changes that can affect themselves and, in turn, the neuronal and non-neuronal surrounding cells, thus actively impacting the ALS course. Moreover, this review aims to point out knowledge gaps that deserve further investigation.
Collapse
Affiliation(s)
- Francesca Provenzano
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Carola Torazza
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genova, Italy; (F.P.); (C.T.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
12
|
Pantaleão HQ, Araujo da Silva JC, Rufino da Silva B, Echeverry MB, Alberto-Silva C. Peptide fraction from B. jararaca snake venom protects against oxidative stress-induced changes in neuronal PC12 cell but not in astrocyte-like C6 cell. Toxicon 2023; 231:107178. [PMID: 37302421 DOI: 10.1016/j.toxicon.2023.107178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/24/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
Venom-derived proteins and peptides have prevented neuronal cell loss, damage, and death in the study of neurodegenerative disorders. The cytoprotective effects of the peptide fraction (PF) from Bothrops jararaca snake venom were evaluated against oxidative stress changes in neuronal PC12 cells and astrocyte-like C6 cells. PC12 and C6 cells were pre-treated for 4 h with different concentrations of PF, and then H2O2 was added (0.5 mM in PC12 cells; 0.4 mM in C6 cells) and incubated for 20 h more. In PC12 cells, PF at 0.78 μg mL-1 increased viability (113.6 ± 6.3%) and metabolism (96.3 ± 10.3%) cell against H2O2-induced neurotoxicity (75.6 ± 5.8%; 66.5 ± 3.3%, respectively), reducing oxidative stress markers such as ROS generation, NO production, and arginase indirect activity through urea synthesis. Despite that, PF showed no cytoprotective effects in C6 cells, but potentiated the H2O2-induced damage at a concentration lower than 0.07 μg mL-1. Furthermore, the role of metabolites derived from L-arginine metabolism was verified in PF-mediated neuroprotection in PC12 cells, using specific inhibitors of two of the key enzymes in the L-arginine metabolic pathway: the α-Methyl-DL-aspartic acid (MDLA) to argininosuccinate synthetase (AsS), responsible for the recycling of L-citrulline to L-arginine; and, L-NΩ-Nitroarginine methyl ester (L-Name) to nitric oxide synthase (NOS), which catalyzes the synthesis of NO from L-arginine. The inhibition of AsS and NOS suppressed PF-mediated cytoprotection against oxidative stress, indicating that its mechanism is dependent on the production pathway of L-arginine metabolites such as NO and, more importantly, polyamines from ornithine metabolism, which are involved in the neuroprotection mechanism described in the literature. Overall, this work provides novel opportunities for evaluating whether the neuroprotective properties of PF shown in particular neuronal cells are sustained and for exploring potential drug development pathways for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Halyne Queiroz Pantaleão
- Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory Federal University of ABC (UFABC), São Bernardo Do Campo, 09606-070, SP, Brazil
| | - Julio Cezar Araujo da Silva
- Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory Federal University of ABC (UFABC), São Bernardo Do Campo, 09606-070, SP, Brazil
| | - Brenda Rufino da Silva
- Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory Federal University of ABC (UFABC), São Bernardo Do Campo, 09606-070, SP, Brazil
| | - Marcela Bermudez Echeverry
- Center for Mathematics, Computation and Cognition (CMCC), UFABC, São Bernardo Do Campo, 09606-070, SP, Brazil
| | - Carlos Alberto-Silva
- Natural and Humanities Sciences Center (CCNH), Experimental Morphophysiology Laboratory Federal University of ABC (UFABC), São Bernardo Do Campo, 09606-070, SP, Brazil.
| |
Collapse
|
13
|
Qian K, Jiang X, Liu ZQ, Zhang J, Fu P, Su Y, Brazhe NA, Liu D, Zhu LQ. Revisiting the critical roles of reactive astrocytes in neurodegeneration. Mol Psychiatry 2023; 28:2697-2706. [PMID: 37037874 DOI: 10.1038/s41380-023-02061-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
Astrocytes, an integral component of the central nervous system (CNS), contribute to the maintenance of physiological homeostasis through their roles in synaptic function, K+ buffering, blood-brain barrier (BBB) maintenance, and neuronal metabolism. Reactive astrocytes refer to astrocytes undergoing morphological, molecular and functional remodelling in response to pathological stimuli. The activation and differentiation of astrocytes are implicated in the pathogenesis of multiple neurodegenerative diseases. However, there are still controversies regarding their subset identification, function and nomenclature in neurodegeneration. In this review, we revisit the multidimensional roles of reactive astrocytes in Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Furthermore, we propose a precise linkage between astrocyte subsets and their functions based on single-cell sequencing analyses.
Collapse
Affiliation(s)
- Kang Qian
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Neurosurgery, Union Hospital, Huazhong University of Science and Technology, Jiefang Avenue No. 1277, 430022, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Huazhong University of Science and Technology, Jiefang Avenue No. 1277, 430022, Wuhan, China
| | - Zhi-Qiang Liu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Zhang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Huazhong University of Science and Technology, Jiefang Avenue No. 1277, 430022, Wuhan, China
| | - Ying Su
- Department of Neurology, Union Hospital, Huazhong University of Science and Technology, Jiefang Avenue No. 1277, 430022, Wuhan, China
| | - Nadezda A Brazhe
- Biophysics Department, Biological Faculty, Moscow State University, Moscow, Russia
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Galasso L, Cappella A, Mulè A, Castelli L, Ciorciari A, Stacchiotti A, Montaruli A. Polyamines and Physical Activity in Musculoskeletal Diseases: A Potential Therapeutic Challenge. Int J Mol Sci 2023; 24:9798. [PMID: 37372945 DOI: 10.3390/ijms24129798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Autophagy dysregulation is commonplace in the pathogenesis of several invalidating diseases, such as musculoskeletal diseases. Polyamines, as spermidine and spermine, are small aliphatic cations essential for cell growth and differentiation, with multiple antioxidant, anti-inflammatory, and anti-apoptotic effects. Remarkably, they are emerging as natural autophagy regulators with strong anti-aging effects. Polyamine levels were significantly altered in the skeletal muscles of aged animals. Therefore, supplementation of spermine and spermidine may be important to prevent or treat muscle atrophy. Recent in vitro and in vivo experimental studies indicate that spermidine reverses dysfunctional autophagy and stimulates mitophagy in muscles and heart, preventing senescence. Physical exercise, as polyamines, regulates skeletal muscle mass inducing proper autophagy and mitophagy. This narrative review focuses on the latest evidence regarding the efficacy of polyamines and exercise as autophagy inducers, alone or coupled, in alleviating sarcopenia and aging-dependent musculoskeletal diseases. A comprehensive description of overall autophagic steps in muscle, polyamine metabolic pathways, and effects of the role of autophagy inducers played by both polyamines and exercise has been presented. Although literature shows few data in regard to this controversial topic, interesting effects on muscle atrophy in murine models have emerged when the two "autophagy-inducers" were combined. We hope these findings, with caution, can encourage researchers to continue investigating in this direction. In particular, if these novel insights could be confirmed in further in vivo and clinical studies, and the two synergic treatments could be optimized in terms of dose and duration, then polyamine supplementation and physical exercise might have a clinical potential in sarcopenia, and more importantly, implications for a healthy lifestyle in the elderly population.
Collapse
Affiliation(s)
- Letizia Galasso
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Annalisa Cappella
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Antonino Mulè
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Lucia Castelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Andrea Ciorciari
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, I.R.C.C.S. Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Angela Montaruli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- I.R.C.C.S. Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy
| |
Collapse
|
15
|
Yao J, Chen C, Guo Y, Yang Y, Liu X, Chu S, Ai Q, Zhang Z, Lin M, Yang S, Chen N. A Review of Research on the Association between Neuron-Astrocyte Signaling Processes and Depressive Symptoms. Int J Mol Sci 2023; 24:ijms24086985. [PMID: 37108148 PMCID: PMC10139177 DOI: 10.3390/ijms24086985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Depression is a mental illness that has a serious negative impact on physical and mental health. The pathophysiology of depression is still unknown, and therapeutic medications have drawbacks, such as poor effectiveness, strong dependence, adverse drug withdrawal symptoms, and harmful side effects. Therefore, the primary purpose of contemporary research is to understand the exact pathophysiology of depression. The connection between astrocytes, neurons, and their interactions with depression has recently become the focus of great research interest. This review summarizes the pathological changes of neurons and astrocytes, and their interactions in depression, including the alterations of mid-spiny neurons and pyramidal neurons, the alterations of astrocyte-related biomarkers, and the alterations of gliotransmitters between astrocytes and neurons. In addition to providing the subjects of this research and suggestions for the pathogenesis and treatment techniques of depression, the intention of this article is to more clearly identify links between neuronal-astrocyte signaling processes and depressive symptoms.
Collapse
Affiliation(s)
- Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China
| | - Cong Chen
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yi Guo
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xinya Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha 410208, China
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
16
|
The impact of amino acid metabolism on adult neurogenesis. Biochem Soc Trans 2023; 51:233-244. [PMID: 36606681 DOI: 10.1042/bst20220762] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
Adult neurogenesis is a multistage process during which newborn neurons are generated through the activation and proliferation of neural stem cells (NSCs) and integrated into existing neural networks. Impaired adult neurogenesis has been observed in various neurological and psychiatric disorders, suggesting its critical role in cognitive function, brain homeostasis, and neural repair. Over the past decades, mounting evidence has identified a strong association between metabolic status and adult neurogenesis. Here, we aim to summarize how amino acids and their neuroactive metabolites affect adult neurogenesis. Furthermore, we discuss the causal link between amino acid metabolism, adult neurogenesis, and neurological diseases. Finally, we propose that systematic elucidation of how amino acid metabolism regulates adult neurogenesis has profound implications not only for understanding the biological underpinnings of brain development and neurological diseases, but also for providing potential therapeutic strategies to intervene in disease progression.
Collapse
|
17
|
Antizyme Inhibitor 2-Deficient Mice Exhibit Altered Brain Polyamine Levels and Reduced Locomotor Activity. Biomolecules 2022; 13:biom13010014. [PMID: 36671399 PMCID: PMC9855896 DOI: 10.3390/biom13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Alterations in the neural polyamine system are known to be associated with different brain pathological conditions. In addition, the regulation of enzymes involved in polyamine metabolism such as ornithine decarboxylase (ODC), antizymes (AZs), and antizyme inhibitors (AZINs) is critical during brain development. However, while most studies focus on ODC and AZs, less is known about AZIN expression and function in the brain. Thus, our aim was to analyze the expression pattern of AZIN2 during postnatal development, its brain distribution, and its possible implication in phenotypical alterations. METHODS The expression pattern of Azin2 and other genes related to polyamine metabolism was analyzed by RT-qPCR. β-D-galactosidase staining was used to determine the anatomical distribution of AZIN2 in a Azin2 knockout model containing the βGeo marker. Brain polyamine content was determined by HPLC. The Rota-Rod and Pole functional tests were used to evaluate motor skills in Azin2-lacking mice. RESULTS Our results showed that expression of genes codifying for AZs and AZINs showed a similar increasing pattern over time that coincided with a decrease in ODC activity and putrescine levels. The analysis of AZIN2 distribution demonstrated that it is strongly expressed in the cerebellum and distributed along the neuron body and dendrites. The ablation of Azin2 showed a decrease in putrescine levels and is related to reduced motor skills. CONCLUSIONS Our study revealed that AZIN2 expression in the brain is particularly limited to the cerebellum. In addition, the ablation of Azin2 leads to a reduction in putrescine that relates to alterations in motor function, suggesting the role of AZIN2 in the functioning of dopaminergic neurons.
Collapse
|
18
|
Benedikt J, Malpica-Nieves CJ, Rivera Y, Méndez-González M, Nichols CG, Veh RW, Eaton MJ, Skatchkov SN. The Polyamine Spermine Potentiates the Propagation of Negatively Charged Molecules through the Astrocytic Syncytium. Biomolecules 2022; 12:biom12121812. [PMID: 36551240 PMCID: PMC9775384 DOI: 10.3390/biom12121812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The interest in astrocytes, the silent brain cells that accumulate polyamines (PAs), is growing. PAs exert anti-inflammatory, antioxidant, antidepressant, neuroprotective, and other beneficial effects, including increasing longevity in vivo. Unlike neurons, astrocytes are extensively coupled to others via connexin (Cx) gap junctions (GJs). Although there are striking modulatory effects of PAs on neuronal receptors and channels, PA regulation of the astrocytic GJs is not well understood. We studied GJ-propagation using molecules of different (i) electrical charge, (ii) structure, and (iii) molecular weight. Loading single astrocytes with patch pipettes containing membrane-impermeable dyes, we observed that (i) even small molecules do not easily permeate astrocytic GJs, (ii) the ratio of the charge to weight of these molecules is the key determinant of GJ permeation, (iii) the PA spermine (SPM) induced the propagation of negatively charged molecules via GJs, (iv) while no effects were observed on propagation of macromolecules with net-zero charge. The GJ uncoupler carbenoxolone (CBX) blocked such propagation. Taken together, these findings indicate that SPM is essential for astrocytic GJ communication and selectively facilitates intracellular propagation via GJs for negatively charged molecules through glial syncytium.
Collapse
Affiliation(s)
- Jan Benedikt
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
| | - Christian J. Malpica-Nieves
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA
- Correspondence: (C.J.M.-N.); (S.N.S.); Tel.: +1-787-798-3001 (ext. 2057) (S.N.S.)
| | - Yomarie Rivera
- Department of Chiropractic, Universidad Central del Caribe, Bayamón, PR 00956, USA
| | | | - Colin G. Nichols
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rüdiger W. Veh
- Institut für Zell- und Neurobiologie, Charité, 10115 Berlin, Germany
| | - Misty J. Eaton
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA
| | - Serguei N. Skatchkov
- Department of Physiology, Universidad Central del Caribe, Bayamón, PR 00956, USA
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR 00956, USA
- Correspondence: (C.J.M.-N.); (S.N.S.); Tel.: +1-787-798-3001 (ext. 2057) (S.N.S.)
| |
Collapse
|