1
|
Olmos L, González-Pedraza AS, Vergara-Hernández HJ, Bouvard D, López-Cornejo MS, Servín-Castañeda R. Development of Tailored Porous Ti6Al4V Materials by Extrusion 3D Printing. MATERIALS (BASEL, SWITZERLAND) 2025; 18:389. [PMID: 39859863 PMCID: PMC11767217 DOI: 10.3390/ma18020389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Nowadays, metallic bone replacement is in high demand due to different issues, like sicknesses and accidents. Thus, bone implants are fabricated with tailored properties and microstructure for long-term use in the human body. To improve such implants, 3D printing is the most promising technique. Therefore, this work aims to evaluate the fabrication of porous materials by extrusion 3D printing of Ti6Al4V. Cylindrical samples were fabricated from pellets for metal injection molding of Ti6Al4V powders, creating hexagonal channels with three different sizes. The densification kinetics was evaluated by dilatometry tests, which enabled following the densification of the samples during the sintering cycle. Subsequently, the samples were characterized by scanning electron microscopy and X-ray computed tomography to analyze their microstructure. Compression tests evaluated the mechanical strength of sintered samples. It was found that the hexagonal shape during printing is better defined as the channel size increases. The results show similar behavior for each of the channel sizes during sintering; however, greater densification is obtained as the channel size decreases. Additionally, microporosity is obtained at the particle level, which is completely interconnected, ensuring the passage of fluids through the entire sample. On the other hand, as the channel size increases, Young's modulus and yield strength are considerably reduced. The main conclusion is that parts with two scales of porosity can be designed by the 3D printing extrusion process.
Collapse
Affiliation(s)
- Luis Olmos
- Universidad Michoacana de San Nicolás de Hidalgo, INICIT, Fco. J. Mujica S/N, Morelia 58060, Michoacán, Mexico;
| | - Ana Silvia González-Pedraza
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Morelia, Av. Tecnológico #1500, Colonia Lomas de Santiaguito, Morelia 58120, Michoacán, Mexico; (H.J.V.-H.); (M.S.L.-C.)
| | - Héctor Javier Vergara-Hernández
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Morelia, Av. Tecnológico #1500, Colonia Lomas de Santiaguito, Morelia 58120, Michoacán, Mexico; (H.J.V.-H.); (M.S.L.-C.)
| | - Didier Bouvard
- University Grenoble Alpes, CNRS, SIMAP, 38000 Grenoble, France;
| | - Monserrat Sofía López-Cornejo
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/I.T. Morelia, Av. Tecnológico #1500, Colonia Lomas de Santiaguito, Morelia 58120, Michoacán, Mexico; (H.J.V.-H.); (M.S.L.-C.)
| | - Rumualdo Servín-Castañeda
- Universidad Autónoma de Coahuila, Facultad de Ingeniería Mecánica y Eléctrica Unidad Norte, Monclova 25720, Coahuila, Mexico;
| |
Collapse
|
2
|
Brouki Milan P, Masoumi F, Biazar E, Zare Jalise S, Mehrabi A. Exploiting the Potential of Decellularized Extracellular Matrix (ECM) in Tissue Engineering: A Review Study. Macromol Biosci 2025; 25:e2400322. [PMID: 39412772 DOI: 10.1002/mabi.202400322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/03/2024] [Indexed: 01/14/2025]
Abstract
While significant progress has been made in creating polymeric structures for tissue engineering, the therapeutic application of these scaffolds remains challenging owing to the intricate nature of replicating the conditions of native organs and tissues. The use of human-derived biomaterials for therapeutic purposes closely imitates the properties of natural tissue, thereby assisting in tissue regeneration. Decellularized extracellular matrix (dECM) scaffolds derived from natural tissues have become popular because of their unique biomimetic properties. These dECM scaffolds can enhance the body's ability to heal itself or be used to generate new tissues for restoration, expanding beyond traditional tissue transfers and transplants. Enhanced knowledge of how ECM scaffold materials affect the microenvironment at the injury site is expected to improve clinical outcomes. In this review, recent advancements in dECM scaffolds are explored and relevant perspectives are offered, highlighting the development and application of these scaffolds in tissue engineering for various organs, such as the skin, nerve, bone, heart, liver, lung, and kidney.
Collapse
Affiliation(s)
- Peiman Brouki Milan
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 144-961-4535, Iran
| | - Farimah Masoumi
- School of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, 468-416-1167, Iran
| | - Esmaeil Biazar
- Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, 468-416-1167, Iran
| | - Saeedeh Zare Jalise
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, 371-364-9373, Iran
| | - Arezou Mehrabi
- School of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, 468-416-1167, Iran
| |
Collapse
|
3
|
Murkar RS, Wiese-Rischke C, Weigel T, Kopp S, Walles H. Developing human upper, lower, and deep lung airway models: Combining different scaffolds and developing complex co-cultures. J Tissue Eng 2025; 16:20417314241299076. [PMID: 39885949 PMCID: PMC11780661 DOI: 10.1177/20417314241299076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/27/2024] [Indexed: 02/01/2025] Open
Abstract
Advanced in vitro models are crucial for studying human airway biology. Our objective was the development and optimization of 3D in vitro models representing diverse airway regions, including deep lung alveolar region. This initiative was aimed at assessing the influence of selective scaffold materials on distinct airway co-culture models. While PET membranes (30 µm thickness) were unsuitable for alveolar models due to their stiffness and relatively high Young's modulus, a combination of collagenous scaffolds seeded with Calu-3 cells and fibroblasts, showed increased mucus production going from week 1 to week 4 of air lift culture. Meanwhile standard electrospun polymer membrane (50-60 µm thick), which possesses a considerably low modulus of elasticity, offered higher flexibility and supported co-cultures of primary alveolar epithelial (huAEC) and endothelial cells (hEC) in concert with lung biopsy-derived fibroblasts which enhanced maturation of the tissue model. As published, designing human alveolar in vitro models require thin scaffold to mimic the required ultra-thin ECM, in addition to assuring right balanced AT1/AT2 ratio for biomimetic representation. We concluded that co-cultivation of primary/stem cells or cell lines has a higher influence on the function of the airway tissue models than the applied scaffolds.
Collapse
Affiliation(s)
- Rasika S Murkar
- Core Facility Tissue Engineering, Institute of Chemistry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Cornelia Wiese-Rischke
- University Clinic for Cardiac and Thoracic Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Tobias Weigel
- Fraunhofer Translational Center for Regenerative Medicine, Fraunhofer ISC, Wuerzburg, Germany
| | - Sascha Kopp
- Core Facility Tissue Engineering, Institute of Chemistry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Heike Walles
- Core Facility Tissue Engineering, Institute of Chemistry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
4
|
Torkashvand M, Rezakhani L, Habibi Z, Mikaeili A, Rahmati S. Innovative approaches in lung tissue engineering: the role of exosome-loaded bioscaffolds in regenerative medicine. Front Bioeng Biotechnol 2024; 12:1502155. [PMID: 39758953 PMCID: PMC11695380 DOI: 10.3389/fbioe.2024.1502155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Lung diseases account for over four million premature deaths every year, and experts predict that this number will increase in the future. The top cause of death globally is diseases which include conditions like lung cancer asthma and COPD. Treating severe acute lung injury is a complex task because lungs struggle to heal themselves in the presence of swelling inflammation and scarring caused by damage, to the lung tissues. Though achieving lung regeneration, in controlled environments is still an ambition; ongoing studies are concentrating on notable progress, in the field of lung tissue engineering and methods for repairing lung damage. This review delves into methods, for regenerating lungs with a focus on exosome carry bioscaffolds and mesenchymal stem cells among others. It talks about how these new techniques can help repair lung tissue and improve lung function in cases of damage. Also noted is the significance of ex vivo lung perfusion (EVLP), for rejuvenating donor lungs and the healing properties of exosomes in supporting lung regeneration.
Collapse
Affiliation(s)
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Habibi
- Clinical Research Development Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Abdolhamid Mikaeili
- Medical Biology Research Center, Health Technology Institute, University of Medical Sciences, Kermanshah, Iran
| | - Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
5
|
Ahmadipour M, Prado JC, Hakak-Zargar B, Mahmood MQ, Rogers IM. Using ex vivo bioengineered lungs to model pathologies and screening therapeutics: A proof-of-concept study. Biotechnol Bioeng 2024; 121:3020-3033. [PMID: 38837764 DOI: 10.1002/bit.28754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/19/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Respiratory diseases, claim over eight million lives annually. However, the transition from preclinical to clinical phases in research studies is often hindered, partly due to inadequate representation of preclinical models in clinical trials. To address this, we conducted a proof-of-concept study using an ex vivo model to identify lung pathologies and to screen therapeutics in a humanized rodent model. We extracted and decellularized mouse heart-lung tissues using a detergent-based technique. The lungs were then seeded and cultured with human cell lines (BEAS-2B, A549, and Calu3) for 6-10 days, representing healthy lungs, cancerous states, and congenital pathologies, respectively. By manipulating cultural conditions and leveraging the unique characteristics of the cell lines, we successfully modeled various pathologies, including advanced-stage solid tumors and the primary phase of SARS-CoV-2 infection. Validation was conducted through histology, immunofluorescence staining, and pathology analysis. Additionally, our study involved pathological screening of the efficacy and impact of key anti-neoplastic therapeutics (Cisplatin and Wogonin) in cancer models. The results highlight the versatility and strength of the ex vivo model in representing crucial lung pathologies and screening therapeutics during the preclinical phase. This approach holds promise for bridging the gap between preclinical and clinical research, aiding in the development of effective treatments for respiratory diseases, including lung cancer.
Collapse
Affiliation(s)
- Mohammadali Ahmadipour
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jorge Castilo Prado
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Benyamin Hakak-Zargar
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Malik Quasir Mahmood
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Ian M Rogers
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada
- Soham & Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Jin Y, Sun Q, Ma R, Li R, Qiao R, Li J, Wang L, Hu Y. The trend of allogeneic tendon decellularization: literature review. Cell Tissue Bank 2024; 25:357-367. [PMID: 37355504 DOI: 10.1007/s10561-023-10097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Tendon injuries repair is a significant burden for orthopaedic surgeons. Finding a proper graft material to repair tendon is one of the main challenges in orthopaedics, for which the requirement of substitute for tendon repair would be different for each clinical application. Among biological scaffolds, the use of decellularized tendon increasingly represents an interesting approach to treat tendon injuries and several articles have investigated the approaches of tendon decellularization. To understand the outcomes of the the approaches of tendon decellularization on effect of tendon transplantation, a literature review was performed. This review was conducted by searching in Pubmed and Embase and 64 studies were included in this study. The findings revealed that the common approaches to decellularize tendon include chemical, physical, and enzymatic decellularization methods or their combination. With the development of tissue engineering, researchers also put forward new theories such as automatic acellular machine, 3D printing technology to manufacture acellular scaffold.
Collapse
Affiliation(s)
- Yangyang Jin
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Qi Sun
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Rongxing Ma
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Ruifeng Li
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Ruiqi Qiao
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Jikai Li
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Limin Wang
- Beijing Wonderful Medical Biomaterials Co., Ltd., Beijing, China
| | - Yongcheng Hu
- Department of Bone and Soft Tissue Oncology, Tianjin Hospital, 406 Jiefang Southern Road, Tianjin, 300000, China.
| |
Collapse
|
7
|
Doryab A, Heydarian M, Yildirim AÖ, Hilgendorff A, Behr J, Schmid O. Breathing-induced stretch enhances the efficacy of an inhaled and orally delivered anti-fibrosis drug in vitro. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
8
|
Wang B, Qinglai T, Yang Q, Li M, Zeng S, Yang X, Xiao Z, Tong X, Lei L, Li S. Functional acellular matrix for tissue repair. Mater Today Bio 2023; 18:100530. [PMID: 36601535 PMCID: PMC9806685 DOI: 10.1016/j.mtbio.2022.100530] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
In view of their low immunogenicity, biomimetic internal environment, tissue- and organ-like physicochemical properties, and functionalization potential, decellularized extracellular matrix (dECM) materials attract considerable attention and are widely used in tissue engineering. This review describes the composition of extracellular matrices and their role in stem-cell differentiation, discusses the advantages and disadvantages of existing decellularization techniques, and presents methods for the functionalization and characterization of decellularized scaffolds. In addition, we discuss progress in the use of dECMs for cartilage, skin, nerve, and muscle repair and the transplantation or regeneration of different whole organs (e.g., kidneys, liver, uterus, lungs, and heart), summarize the shortcomings of using dECMs for tissue and organ repair after refunctionalization, and examine the corresponding future prospects. Thus, the present review helps to further systematize the application of functionalized dECMs in tissue/organ transplantation and keep researchers up to date on recent progress in dECM usage.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Tong
- Department of Hemodialysis, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
9
|
Flores-Jiménez MS, Garcia-Gonzalez A, Fuentes-Aguilar RQ. Review on Porous Scaffolds Generation Process: A Tissue Engineering Approach. ACS APPLIED BIO MATERIALS 2023; 6:1-23. [PMID: 36599046 DOI: 10.1021/acsabm.2c00740] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Porous scaffolds have been widely explored for tissue regeneration and engineering in vitro three-dimensional models. In this review, a comprehensive literature analysis is conducted to identify the steps involved in their generation. The advantages and disadvantages of the available techniques are discussed, highlighting the importance of considering pore geometrical parameters such as curvature and size, and summarizing the requirements to generate the porous scaffold according to the desired application. This paper considers the available design tools, mathematical models, materials, fabrication techniques, cell seeding methodologies, assessment methods, and the status of pore scaffolds in clinical applications. This review compiles the relevant research in the field in the past years. The trends, challenges, and future research directions are discussed in the search for the generation of a porous scaffold with improved mechanical and biological properties that can be reproducible, viable for long-term studies, and closer to being used in the clinical field.
Collapse
Affiliation(s)
- Mariana S Flores-Jiménez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Alejandro Garcia-Gonzalez
- Escuela de Medicina, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Rita Q Fuentes-Aguilar
- Institute of Advanced Materials and Sustainable Manufacturing, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| |
Collapse
|
10
|
Doryab A, Schmid O. Towards a gold standard functional readout to characterize In Vitro lung barriers. Eur J Pharm Sci 2022; 179:106305. [DOI: 10.1016/j.ejps.2022.106305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 01/10/2023]
|
11
|
Doryab A, Taskin MB, Stahlhut P, Groll J, Schmid O. Real-Time Measurement of Cell Mechanics as a Clinically Relevant Readout of an In Vitro Lung Fibrosis Model Established on a Bioinspired Basement Membrane. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205083. [PMID: 36030365 DOI: 10.1002/adma.202205083] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Lung fibrosis, one of the major post-COVID complications, is a progressive and ultimately fatal disease without a cure. Here, an organ- and disease-specific in vitro mini-lung fibrosis model equipped with noninvasive real-time monitoring of cell mechanics is introduced as a functional readout. To establish an intricate multiculture model under physiologic conditions, a biomimetic ultrathin basement (biphasic elastic thin for air-liquid culture conditions, BETA) membrane (<1 µm) is developed with unique properties, including biocompatibility, permeability, and high elasticity (<10 kPa) for cell culturing under air-liquid interface and cyclic mechanical stretch conditions. The human-based triple coculture fibrosis model, which includes epithelial and endothelial cell lines combined with primary fibroblasts from idiopathic pulmonary fibrosis patients established on the BETA membrane, is integrated into a millifluidic bioreactor system (cyclic in vitro cell-stretch, CIVIC) with dose-controlled aerosolized drug delivery, mimicking inhalation therapy. The real-time measurement of cell/tissue stiffness (and compliance) is shown as a clinical biomarker of the progression/attenuation of fibrosis upon drug treatment, which is confirmed for inhaled Nintedanib-an antifibrosis drug. The mini-lung fibrosis model allows the combined longitudinal testing of pharmacodynamics and pharmacokinetics of drugs, which is expected to enhance the predictive capacity of preclinical models and hence facilitate the development of approved therapies for lung fibrosis.
Collapse
Affiliation(s)
- Ali Doryab
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Neuherberg, Germany
- Comprehensive Pneumology Center-Munich (CPC-M) bioArchive, Helmholtz Munich, 81377, Munich, Germany
| | - Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, 97070, Würzburg, Germany
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, 97070, Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University of Würzburg, 97070, Würzburg, Germany
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764, Neuherberg, Germany
- Comprehensive Pneumology Center-Munich (CPC-M) bioArchive, Helmholtz Munich, 81377, Munich, Germany
| |
Collapse
|