1
|
Zhang W, Cai Z, Ma D, Liu M, Wang J, Sun L, Lew AM, Xu Y. Local adaptive immunity in atherosclerosis with T cell activation by aortic dendritic cells accelerates pathogenesis. iScience 2024; 27:111144. [PMID: 39502289 PMCID: PMC11536043 DOI: 10.1016/j.isci.2024.111144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Atherosclerosis represents a chronic inflammatory condition in arterial walls, where local immune cells significantly contribute to disease progression. This study employed various in situ immunological techniques to investigate the specific roles of aortic dendritic cell (DC) subsets in atherosclerotic animal models, distinguishing between normal and diseased immune contexts. Our findings revealed that aortic DCs, particularly the cDC1 subset, played a critical role in facilitating CD8+ T cell activation through antigen presentation. Additionally, atherosclerosis-induced increases in GM-CSF levels enhanced CCR7 expression on aortic monocyte-derived DCs, promoting their recruitment and IL-12 production for Th1 differentiation. Notably, immunizing pre-atherosclerotic mice with DC-presented antigens or transferring aortic DCs from atherosclerotic mice resulted in accelerated disease onset. This research elucidates the adaptive immune functions of aortic DCs, offering insights into the cellular mechanisms driving aortic inflammation and potential therapeutic targets for atherosclerosis management.
Collapse
Affiliation(s)
- Wenjie Zhang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Zecheng Cai
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Dan Ma
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Meng Liu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Juncheng Wang
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Li Sun
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Andrew M. Lew
- The Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, VIC, Australia
| | - Yuekang Xu
- Anhui Provincial Key Laboratory for Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
2
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
3
|
Larsson AO, Eriksson MB. Role of NO in Disease: Good, Bad or Ugly. Biomedicines 2024; 12:1343. [PMID: 38927550 PMCID: PMC11201552 DOI: 10.3390/biomedicines12061343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
This Special Issue of Biomedicines (https://www [...].
Collapse
Affiliation(s)
- Anders O. Larsson
- Department of Medical Sciences, Section of Clinical Chemistry, Uppsala University, 751 85 Uppsala, Sweden;
| | - Mats B. Eriksson
- Department of Surgical Sciences, Section of Anaesthesiology and Intensive Care Medicine, Uppsala University, 751 85 Uppsala, Sweden
- NOVA Medical School, New University of Lisbon, 1099-085 Lisbon, Portugal
| |
Collapse
|
4
|
Li J, Warren-Smith SC, McLaughlin RA, Ebendorff-Heidepriem H. Single-fiber probes for combined sensing and imaging in biological tissue: recent developments and prospects. BIOMEDICAL OPTICS EXPRESS 2024; 15:2392-2405. [PMID: 38633092 PMCID: PMC11019705 DOI: 10.1364/boe.517920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
Single-fiber-based sensing and imaging probes enable the co-located and simultaneous observation and measurement (i.e., 'sense' and 'see') of intricate biological processes within deep anatomical structures. This innovation opens new opportunities for investigating complex physiological phenomena and potentially allows more accurate diagnosis and monitoring of disease. This prospective review starts with presenting recent studies of single-fiber-based probes for concurrent and co-located fluorescence-based sensing and imaging. Notwithstanding the successful initial demonstration of integrated sensing and imaging within single-fiber-based miniaturized devices, the realization of these devices with enhanced sensing sensitivity and imaging resolution poses notable challenges. These challenges, in turn, present opportunities for future research, including the design and fabrication of complex lens systems and fiber architectures, the integration of novel materials and other sensing and imaging techniques.
Collapse
Affiliation(s)
- Jiawen Li
- School of Electrical and Mechanical Engineering, The University of Adelaide, South Australia, 5005, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia, 5005, Australia
| | - Stephen C. Warren-Smith
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia, 5005, Australia
- Future Industries Institute, The University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Robert A. McLaughlin
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia, 5005, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Heike Ebendorff-Heidepriem
- Institute for Photonics and Advanced Sensing, The University of Adelaide, South Australia, 5005, Australia
- School of Physics, Chemistry and Earth Sciences, The University of Adelaide, South Australia, 5005, Australia
| |
Collapse
|
5
|
Ding H, Luo L, Su L, Chen J, Li Y, Hu L, Luo K, Tian X. Gasotransmitter nitric oxide imaging in Alzheimer's disease and glioblastoma with diamino-cyclic-metalloiridium phosphorescence probes. Biosens Bioelectron 2024; 247:115939. [PMID: 38145594 DOI: 10.1016/j.bios.2023.115939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 12/27/2023]
Abstract
Nitric Oxide (NO), a significant gasotransmitter in biological systems, plays a crucial role in neurological diseases and cancer. Currently, there is a lack of effective methods for rapidly and sensitively identifying NO and elucidating its relationship with neurological diseases. Novel diamino-cyclic-metalloiridium phosphorescence probes, Ir-CDA and Ir-BDA, have been designed to visualize the gasotransmitter NO in Alzheimer's disease (AD) and glioblastoma (GBM). Ir-CDA and Ir-BDA utilize iridium (III) as the central ion and incorporate a diamino group as a ligand. The interaction between the diamino structure and NO leads to the formation of a three-nitrogen five-membered ring structure, which opens up phosphorescence. The two probes can selectively bind to NO and offer low detection limits. Additionally, Ir-BDA/Ir-CDA can image NO in brain cancer cell models, neuroinflammatory models, and AD cell models. Furthermore, the NO content in fresh brain sections from AD mice was considerably higher than that in wild-type (WT) mice. Consequently, it is plausible that NO is generated in significant quantities around cells hosting larger Aβ deposits, gradually diffusing throughout the entire brain region. Furthermore, we posit that this phenomenon is a key factor contributing to the higher brain NO content in AD mice compared to that in WT mice. This discovery offers novel insights into the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Haitao Ding
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Li Luo
- The Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Liping Su
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Junyang Chen
- Department of Chemistry, University College London, London, United Kingdom
| | - Yunkun Li
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China
| | - Lei Hu
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Kui Luo
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, And Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Xiaohe Tian
- Department of Radiology and National Clinical Research Center for Geriatrics, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China.
| |
Collapse
|
6
|
Arnau Del Valle C, Thomas P, Galindo F, Muñoz MP, Marín MJ. Gold nanoparticle-based two-photon fluorescent nanoprobe for monitoring intracellular nitric oxide levels. J Mater Chem B 2023; 11:3387-3396. [PMID: 36919860 DOI: 10.1039/d3tb00103b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Nitric oxide (NO) plays an important role in the regulation of the immune, cardiovascular and nervous systems. Consequently, being able to monitor and quantify intracellular NO levels would provide a greater understanding of the implications of this molecule in the different biological processes, including, for example, in cancer. Here, we report a broadly applicable two-photon excitable fluorescent nanoprobe able to detect and potentially quantify NO levels in an extensive range of cellular environments. The nanoprobe consists of a thiolated photoinduced electron transfer-based two=photon fluorescent probe attached onto the surface of 2.4 ± 0.7 nm gold nanoparticles (DANPY-NO@AuNPs). The nanoprobe, which can be synthesised in a reproducible manner and exhibits great stability when stored at room temperature, is able to selectively detect NO in solution, with a dynamic range up to 150 μM, and at pH values of biological relevance. DANPY-NO@AuNPs were able to selectively detect endogenous NO in RAW264.7γ NO- macrophages and THP-1 human leukemic cells; and endogenous and exogenous NO in endothelial cells. The nanoprobe accumulated in the acidic organelles of the tested cell lines showing negligible toxicity. Importantly, DANPY-NO@AuNPs showed potential to quantify intracellular NO concentrations in MDA-MB-231 breast cancer cells. The biological evaluation of the nanoprobe was undertaken using confocal laser scanning (images and intracellular emission spectra) and multiphoton microscopies, and flow cytometry. Based on their excellent sensitivity and stability, and outstanding versatility, DANPY-NO@AuNPs can be applied for the spatiotemporal monitoring of in vitro and in vivo NO levels.
Collapse
Affiliation(s)
- Carla Arnau Del Valle
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Paul Thomas
- Henry Wellcome Laboratory for Cell Imaging, Faculty of Science, University of East Anglia, Norwich Research Park, Norwich, NR4 7T, UK
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, Castellón de la Plana, 12071, Spain
| | - María Paz Muñoz
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK. .,Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
7
|
He C, Zhu J, Zhang H, Qiao R, Zhang R. Photoacoustic Imaging Probes for Theranostic Applications. BIOSENSORS 2022; 12:947. [PMID: 36354456 PMCID: PMC9688356 DOI: 10.3390/bios12110947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Photoacoustic imaging (PAI), an emerging biomedical imaging technology, capitalizes on a wide range of endogenous chromophores and exogenous contrast agents to offer detailed information related to the functional and molecular content of diseased biological tissues. Compared with traditional imaging technologies, PAI offers outstanding advantages, such as a higher spatial resolution, deeper penetrability in biological tissues, and improved imaging contrast. Based on nanomaterials and small molecular organic dyes, a huge number of contrast agents have recently been developed as PAI probes for disease diagnosis and treatment. Herein, we report the recent advances in the development of nanomaterials and organic dye-based PAI probes. The current challenges in the field and future research directions for the designing and fabrication of PAI probes are proposed.
Collapse
Affiliation(s)
| | | | | | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|