1
|
Godang NL, Nguyen AD, DeMeis JD, Paudel SS, Campbell NJ, Barnes KJ, Jeon K, Roussell AS, Gregson KA, Borchert GM. tRNA, yRNA, and rRNA fragment excisions do not involve canonical microRNA biogenesis machinery. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001332. [PMID: 39634108 PMCID: PMC11615671 DOI: 10.17912/micropub.biology.001332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
The excision of specific tRNA-derived small RNAs (tsRNAs), yRNA-derived small RNAs (ysRNAs) and ribosomal RNA-derived small RNAs (rsRNAs) is now well established. Several reports have suggested many of these fragments function much like traditional microRNAs (miRNAs). That said, whereas the expressions of the majority of appreciably expressed miRNAs in HCT116 colon cancer cells are significantly decreased in individual knockouts (KOs) of DROSHA, DGCR8, XPO5, and DICER, on average, only 3.5% of tsRNA, ysRNA, and rsRNA expressions are impaired. Conversely, tsRNA, ysRNA, and rsRNA expressions are significantly increased in each of these KOs as compared to WT. As such, although DICER has been suggested to be involved with the expression of specific tsRNAs, ysRNAs, and rsRNAs, our study finds no evidence supporting the involvement of any of these canonical miRNA biogenesis enzymes in their expressions.
Collapse
Affiliation(s)
- Noel L Godang
- Pharmacology, University of South Alabama College of Medicine, Mobile, AL
| | - Anita D Nguyen
- Pharmacology, University of South Alabama College of Medicine, Mobile, AL
| | - Jeffrey D DeMeis
- Pharmacology, University of South Alabama College of Medicine, Mobile, AL
| | - Sunita S Paudel
- Pharmacology, University of South Alabama College of Medicine, Mobile, AL
| | - Nick J Campbell
- Computer Science, University of South Alabama School of Computing, Mobile, AL
| | | | | | | | | | - Glen M Borchert
- Pharmacology, University of South Alabama College of Medicine, Mobile, AL
| |
Collapse
|
2
|
Velázquez-Flores MÁ, Ruiz Esparza-Garrido R. Fragments derived from non-coding RNAs: how complex is genome regulation? Genome 2024; 67:292-306. [PMID: 38684113 DOI: 10.1139/gen-2023-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The human genome is highly dynamic and only a small fraction of it codes for proteins, but most of the genome is transcribed, highlighting the importance of non-coding RNAs on cellular functions. In addition, it is now known the generation of non-coding RNA fragments under particular cellular conditions and their functions have revealed unexpected mechanisms of action, converging, in some cases, with the biogenic pathways and action machineries of microRNAs or Piwi-interacting RNAs. This led us to the question why the cell produces so many apparently redundant molecules to exert similar functions and regulate apparently convergent processes? However, non-coding RNAs fragments can also function similarly to aptamers, with secondary and tertiary conformations determining their functions. In the present work, it was reviewed and analyzed the current information about the non-coding RNAs fragments, describing their structure and biogenic pathways, with special emphasis on their cellular functions.
Collapse
Affiliation(s)
- Miguel Ángel Velázquez-Flores
- Laboratorio de RNAs No Codificantes de la Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), CDMX, México
| | - Ruth Ruiz Esparza-Garrido
- Investigadora por México, Laboratorio de RNAs No Codificantes de la Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), CDMX, México
| |
Collapse
|
3
|
Rac M. Synthesis and Regulation of miRNA, Its Role in Oncogenesis, and Its Association with Colorectal Cancer Progression, Diagnosis, and Prognosis. Diagnostics (Basel) 2024; 14:1450. [PMID: 39001340 PMCID: PMC11241650 DOI: 10.3390/diagnostics14131450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
The dysfunction of several types of regulators, including miRNAs, has recently attracted scientific attention for their role in cancer-associated changes in gene expression. MiRNAs are small RNAs of ~22 nt in length that do not encode protein information but play an important role in post-transcriptional mRNA regulation. Studies have shown that miRNAs are involved in tumour progression, including cell proliferation, cell cycle, apoptosis, and tumour angiogenesis and invasion, and play a complex and important role in the regulation of tumourigenesis. The detection of selected miRNAs may help in the early detection of cancer cells, and monitoring changes in their expression profile may serve as a prognostic factor in the course of the disease or its treatment. MiRNAs may serve as diagnostic and prognostic biomarkers, as well as potential therapeutic targets for colorectal cancer. In recent years, there has been increasing evidence for an epigenetic interaction between DNA methylation and miRNA expression in tumours. This article provides an overview of selected miRNAs, which are more frequently expressed in colorectal cancer cells, suggesting an oncogenic nature.
Collapse
Affiliation(s)
- Monika Rac
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
4
|
Jung W, Juang U, Gwon S, Nguyen H, Huang Q, Lee S, Lee B, Kim SH, Ryu S, Park J, Park J. Identifying the potential therapeutic effects of miR‑6516 on muscle disuse atrophy. Mol Med Rep 2024; 30:119. [PMID: 38757344 PMCID: PMC11129540 DOI: 10.3892/mmr.2024.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
Muscle atrophy is a debilitating condition with various causes; while aging is one of these causes, reduced engagement in routine muscle‑strengthening activities also markedly contributes to muscle loss. Although extensive research has been conducted on microRNAs (miRNAs/miRs) and their associations with muscle atrophy, the roles played by miRNA precursors remain underexplored. The present study detected the upregulation of the miR‑206 precursor in cell‑free (cf)RNA from the plasma of patients at risk of sarcopenia, and in cfRNAs from the muscles of mice subjected to muscle atrophy. Additionally, a decline in the levels of the miR‑6516 precursor was observed in mice with muscle atrophy. The administration of mimic‑miR‑6516 to mice immobilized due to injury inhibited muscle atrophy by targeting and inhibiting cyclin‑dependent kinase inhibitor 1b (Cdkn1b). Based on these results, the miR‑206 precursor appears to be a potential biomarker of muscle atrophy, whereas miR‑6516 shows promise as a therapeutic target to alleviate muscle deterioration in patients with muscle disuse and atrophy.
Collapse
Affiliation(s)
- Woohyeong Jung
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Uijin Juang
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Suhwan Gwon
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hounggiang Nguyen
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Qingzhi Huang
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Soohyeon Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Beomwoo Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Sunyoung Ryu
- Mitos Biomedical Institute, Mitos Therapeutics Inc., Daejeon 34134, Republic of Korea
| | - Jisoo Park
- Mitos Biomedical Institute, Mitos Therapeutics Inc., Daejeon 34134, Republic of Korea
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Mitos Biomedical Institute, Mitos Therapeutics Inc., Daejeon 34134, Republic of Korea
| |
Collapse
|
5
|
Corell-Sierra J, Marquez-Molins J, Marqués MC, Hernandez-Azurdia AG, Montagud-Martínez R, Cebriá-Mendoza M, Cuevas JM, Albert E, Navarro D, Rodrigo G, Gómez G. SARS-CoV-2 remodels the landscape of small non-coding RNAs with infection time and symptom severity. NPJ Syst Biol Appl 2024; 10:41. [PMID: 38632240 PMCID: PMC11024147 DOI: 10.1038/s41540-024-00367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has significantly impacted global health, stressing the necessity of basic understanding of the host response to this viral infection. In this study, we investigated how SARS-CoV-2 remodels the landscape of small non-coding RNAs (sncRNA) from a large collection of nasopharyngeal swab samples taken at various time points from patients with distinct symptom severity. High-throughput RNA sequencing analysis revealed a global alteration of the sncRNA landscape, with abundance peaks related to species of 21-23 and 32-33 nucleotides. Host-derived sncRNAs, including microRNAs (miRNAs), transfer RNA-derived small RNAs (tsRNAs), and small nucleolar RNA-derived small RNAs (sdRNAs) exhibited significant differential expression in infected patients compared to controls. Importantly, miRNA expression was predominantly down-regulated in response to SARS-CoV-2 infection, especially in patients with severe symptoms. Furthermore, we identified specific tsRNAs derived from Glu- and Gly-tRNAs as major altered elements upon infection, with 5' tRNA halves being the most abundant species and suggesting their potential as biomarkers for viral presence and disease severity prediction. Additionally, down-regulation of C/D-box sdRNAs and altered expression of tinyRNAs (tyRNAs) were observed in infected patients. These findings provide valuable insights into the host sncRNA response to SARS-CoV-2 infection and may contribute to the development of further diagnostic and therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Julia Corell-Sierra
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - María-Carmen Marqués
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | | | - Roser Montagud-Martínez
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - María Cebriá-Mendoza
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - José M Cuevas
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - Eliseo Albert
- Microbiology Service, Clinic University Hospital, INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, 46010, Valencia, Spain
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain.
| | - Gustavo Gómez
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain.
| |
Collapse
|
6
|
Zacchini F, Barozzi C, Venturi G, Montanaro L. How snoRNAs can contribute to cancer at multiple levels. NAR Cancer 2024; 6:zcae005. [PMID: 38406265 PMCID: PMC10894041 DOI: 10.1093/narcan/zcae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
snoRNAs are a class of non-coding RNAs known to guide site specifically RNA modifications such as 2'-O-methylation and pseudouridylation. Recent results regarding snoRNA alterations in cancer has been made available and suggest their potential evaluation as diagnostic and prognostic biomarkers. A large part of these data, however, was not consistently confirmed and failed to provide mechanistic insights on the contribution of altered snoRNA expression to the neoplastic process. Here, we aim to critically review the available literature on snoRNA in cancer focusing on the studies elucidating the functional consequences of their deregulation. Beyond the canonical guide function in RNA processing and modification we also considered additional roles in which snoRNA, in various forms and through different modalities, are involved and that have been recently reported.
Collapse
Affiliation(s)
- Federico Zacchini
- Departmental Program in Laboratory Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, I-40138 Bologna, Italy
| | - Chiara Barozzi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna I-40138, Italy
| | - Giulia Venturi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna I-40138, Italy
- Centre for Applied Biomedical Research – CRBA, University of Bologna, Sant’Orsola Hospital, Bologna I-40138, Italy
| | - Lorenzo Montanaro
- Departmental Program in Laboratory Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, I-40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna I-40138, Italy
| |
Collapse
|
7
|
Delcher HA, DeMeis JD, Ghobar N, Godang NL, Knight SL, Alqudah SY, Nguyen KN, Watters BC, Borchert GM. SARS-Cov-2 small viral RNA suppresses gene expression via complementary binding to mRNA 3' UTR. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.000790. [PMID: 38312351 PMCID: PMC10835431 DOI: 10.17912/micropub.biology.000790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
SARS-CoV-2 (SC2) has been intensely studied since its emergence. However, the mechanisms of host immune dysregulation triggered by SC2 remain poorly understood. That said, it is well established that many prominent viral families encode microRNAs (miRNAs) or related small viral RNAs (svRNAs) capable of regulating human genes involved in immune function. Importantly, recent reports have shown that SC2 encodes its own svRNAs. In this study, we have identified 12 svRNAs expressed during SC2 infection and show that one of these svRNAs can regulate target gene expression via complementary binding to mRNA 3' untranslated regions (3'UTRs) much like human microRNAs.
Collapse
Affiliation(s)
- Haley A Delcher
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Jeffrey D DeMeis
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Nicole Ghobar
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Noel L Godang
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Sierra L Knight
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Shahem Y Alqudah
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Kevin N Nguyen
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Brianna C Watters
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Glen M Borchert
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
- Department of Biology, College of Arts and Sciences, University of South Alabama, Mobile, AL
| |
Collapse
|
8
|
Sun X, Wang G, Luo W, Gu H, Ma W, Wei X, Liu D, Jia S, Cao S, Wang Y, Yuan Z. Small but strong: the emerging role of small nucleolar RNA in cardiovascular diseases. Front Cell Dev Biol 2023; 11:1292925. [PMID: 38033868 PMCID: PMC10682241 DOI: 10.3389/fcell.2023.1292925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and disability worldwide. Numerous studies have demonstrated that non-coding RNAs (ncRNAs) play a primary role in CVD development. Therefore, studies on the mechanisms of ncRNAs are essential for further efforts to prevent and treat CVDs. Small nucleolar RNAs (snoRNAs) are a novel species of non-conventional ncRNAs that guide post-transcriptional modifications and the subsequent maturation of small nuclear RNA and ribosomal RNA. Evidently, snoRNAs are extensively expressed in human tissues and may regulate different illnesses. Particularly, as the next-generation sequencing techniques have progressed, snoRNAs have been shown to be differentially expressed in CVDs, suggesting that they may play a role in the occurrence and progression of cardiac illnesses. However, the molecular processes and signaling pathways underlying the function of snoRNAs remain unidentified. Therefore, it is of great value to comprehensively investigate the association between snoRNAs and CVDs. The aim of this review was to collate existing literature on the biogenesis, characteristics, and potential regulatory mechanisms of snoRNAs. In particular, we present a scientific update on these snoRNAs and their relevance to CVDs in an effort to cast new light on the functions of snoRNAs in the clinical diagnosis of CVDs.
Collapse
Affiliation(s)
- Xue Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gebang Wang
- Department of Thoracic Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Songying Cao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
9
|
Godang NL, DeMeis JD, Houserova D, Chaudhary NY, Salter CJ, Xi Y, McDonald OG, Borchert GM. Global Switch from DICER-dependent MicroRNA to DICER-independent SnoRNA-derived RNA Biogenesis in Malignancy. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000725. [PMID: 36818311 PMCID: PMC9936325 DOI: 10.17912/micropub.biology.000725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/24/2023]
Abstract
SnoRNAs are frequently processed into snoRNA-derived RNAs (sdRNAs) that function much like traditional microRNAs (miRNAs). That said, our analyses suggest a global switch from DICER-dependent (predominately miRNA) to DICER-independent (predominately sdRNA) biogenesis/gene regulation in colon cancer. Whereas the expressions of 259 of 288 appreciably expressed miRNAs are significantly decreased (avg. 6.4% of WT) in human colon cancer DICER-KOs, 95 of 103 sdRNAs are conversely, significantly increased (avg. 679.3%) in DICER-KOs as compared to WT. As many diseases are characterized by DICER deficiency, this putative global switch to DICER-independent sdRNA regulations may contribute to an array of human diseases.
Collapse
Affiliation(s)
- Noel L Godang
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL USA
| | - Jeffrey D DeMeis
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL USA
| | - Dominika Houserova
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL USA
| | - Neil Y Chaudhary
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL USA
| | - Carly J Salter
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL USA
| | - Yaguang Xi
- Department of Genetics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA USA
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Oliver G McDonald
- Department of Pathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL USA
| | - Glen M Borchert
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL USA
| |
Collapse
|
10
|
Naaz S, Sakib N, Houserova D, Badve R, Crucello A, Borchert GM. Characterization of a novel sRNA contributing to biofilm formation in Salmonella enterica serovar Typhimurium. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000796. [PMID: 37151214 PMCID: PMC10160853 DOI: 10.17912/micropub.biology.000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/20/2023] [Accepted: 01/01/1970] [Indexed: 05/09/2023]
Abstract
Small RNAs (sRNAs) are short noncoding RNAs of ~50-200 nucleotides believed to primarily function in regulating crucial activities in bacteria during periods of cellular stress. This study examined the relevance of specific sRNAs on biofilm formation in nutrient starved Salmonella enterica serovar Typhimurium. Eight unique sRNAs were selected for deletion primarily based on their genomic location and/or putative targets. Quantitative and qualitative analyses confirm one of these, sRNA1186573, is required for efficient biofilm formation in S. enterica further highlighting the significance of sRNAs during Salmonella stress response.
Collapse
Affiliation(s)
- Sayema Naaz
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Najmuj Sakib
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Dominika Houserova
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Rani Badve
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Aline Crucello
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Glen M Borchert
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
- Correspondence to: Glen M Borchert (
)
| |
Collapse
|