1
|
Elhodaky M, Duckett D, Santana-Santos L, Oh TS, Abaza Y, Sukhanova M, Lu X, Vormittag-Nocito ER, Jennings LJ, Gao J. Clinicopathological and global methylation profiling of acute myeloid leukemia with mutations in NPM1 and clonal hematopoiesis-related genes. Leuk Lymphoma 2025:1-8. [PMID: 40276909 DOI: 10.1080/10428194.2025.2495105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/03/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025]
Abstract
Recent studies suggest that nucleophosmin 1 (NPM1)-mutated acute myeloid leukemia (NPM1-AML) often arises from clonal hematopoiesis (CH) involving mutations in DTA genes (DNMT3A, TET2, ASXL1), which can persist during remission. This research evaluates the clinical implications of molecular profiling of CH-related DTA genes in NPM1-AML by comparing clinical features, treatment outcomes, and methylation patterns with those of NPM1-AML lacking DTA mutations. Findings show NPM1-AML with DTA mutations exhibited higher WBC/peripheral blood blast counts, a lower incidence of extramedullary disease, more frequent IDH2 but less FLT3-TKD mutations. However, no significant differences in clinical characteristics such as age, treatment response, or disease outcome between the groups were seen. Additionally, despite variations in methylation profiles based on disease status, no distinct differences between DTA-positive and negative groups were observed. Notably, three probes, including one linked to the FAM65B promoter, effectively differentiated disease states, highlighting the potential role of FAM65B in leukemogenesis and patient survival.
Collapse
Affiliation(s)
- Mostafa Elhodaky
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Drew Duckett
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lucas Santana-Santos
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Timothy S Oh
- Department of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yasmin Abaza
- Department of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Madina Sukhanova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Lawrence J Jennings
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Juehua Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Anselmino LE, Malizia F, Avila A, Cesatti Laluce N, Mamberto M, Zanotti LC, Farré C, Sauzeau V, Menacho Márquez M. Overcoming Therapy Resistance in Colorectal Cancer: Targeting the Rac1 Signaling Pathway as a Potential Therapeutic Approach. Cells 2024; 13:1776. [PMID: 39513883 PMCID: PMC11545287 DOI: 10.3390/cells13211776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed type of cancer worldwide and is responsible for numerous deaths. 5-fluorouracil (5-FU) is an effective chemotherapy drug commonly used in the treatment of CRC, either as monotherapy or in combination with other drugs. However, half of CRC cases are resistant to 5-FU-based therapies. To contribute to the understanding of the mechanisms underlying CRC resistance or recurrence after 5-FU-based therapies, we performed a comprehensive study integrating in silico, in vitro, and in vivo approaches. We identified differentially expressed genes and enrichment of pathways associated with recurrence after 5-FU-based therapies. Using these bioinformatics data as a starting point, we selected a group of drugs that restored 5-FU sensitivity to 5-FU resistant cells. Interestingly, treatment with the novel Rac1 inhibitor, 1A-116, reversed morphological changes associated with 5-FU resistance.. Moreover, our in vivo studies have shown that 1A-116 affected tumor growth and the development of metastasis. All our data allowed us to postulate that targeting Rac1 represents a promising avenue for the development of new treatments for patients with CRC resistant to 5-FU-based therapies.
Collapse
Affiliation(s)
- Luciano E. Anselmino
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 2000, Argentina; (L.E.A.); (F.M.); (N.C.L.); (M.M.); (L.C.Z.); (C.F.)
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 2000, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina;
- Centro de Investigación del Cáncer de Rosario (CIC-R), Red de Investigación del Cáncer de Rosario (RICaR), Rosario 2000, Argentina
| | - Florencia Malizia
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 2000, Argentina; (L.E.A.); (F.M.); (N.C.L.); (M.M.); (L.C.Z.); (C.F.)
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 2000, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina;
- Centro de Investigación del Cáncer de Rosario (CIC-R), Red de Investigación del Cáncer de Rosario (RICaR), Rosario 2000, Argentina
| | - Aylén Avila
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina;
- Centro de Investigación del Cáncer de Rosario (CIC-R), Red de Investigación del Cáncer de Rosario (RICaR), Rosario 2000, Argentina
| | - Nahuel Cesatti Laluce
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 2000, Argentina; (L.E.A.); (F.M.); (N.C.L.); (M.M.); (L.C.Z.); (C.F.)
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 2000, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina;
- Centro de Investigación del Cáncer de Rosario (CIC-R), Red de Investigación del Cáncer de Rosario (RICaR), Rosario 2000, Argentina
| | - Macarena Mamberto
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 2000, Argentina; (L.E.A.); (F.M.); (N.C.L.); (M.M.); (L.C.Z.); (C.F.)
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 2000, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina;
- Centro de Investigación del Cáncer de Rosario (CIC-R), Red de Investigación del Cáncer de Rosario (RICaR), Rosario 2000, Argentina
| | - Lucía C. Zanotti
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 2000, Argentina; (L.E.A.); (F.M.); (N.C.L.); (M.M.); (L.C.Z.); (C.F.)
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 2000, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina;
- Centro de Investigación del Cáncer de Rosario (CIC-R), Red de Investigación del Cáncer de Rosario (RICaR), Rosario 2000, Argentina
| | - Cecilia Farré
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 2000, Argentina; (L.E.A.); (F.M.); (N.C.L.); (M.M.); (L.C.Z.); (C.F.)
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 2000, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina;
- Centro de Investigación del Cáncer de Rosario (CIC-R), Red de Investigación del Cáncer de Rosario (RICaR), Rosario 2000, Argentina
| | - Vincent Sauzeau
- Institut du Thorax, Inserm, CNRS, Université de Nantes, 44000 Nantes, France;
| | - Mauricio Menacho Márquez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), Rosario 2000, Argentina; (L.E.A.); (F.M.); (N.C.L.); (M.M.); (L.C.Z.); (C.F.)
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 2000, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas (UNR), Suipacha 660, Rosario 2000, Argentina;
- Centro de Investigación del Cáncer de Rosario (CIC-R), Red de Investigación del Cáncer de Rosario (RICaR), Rosario 2000, Argentina
| |
Collapse
|
3
|
Chen XY, Cheng AY, Wang ZY, Jin JM, Lin JY, Wang B, Guan YY, Zhang H, Jiang YX, Luan X, Zhang LJ. Dbl family RhoGEFs in cancer: different roles and targeting strategies. Biochem Pharmacol 2024; 223:116141. [PMID: 38499108 DOI: 10.1016/j.bcp.2024.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Small Ras homologous guanosine triphosphatase (Rho GTPase) family proteins are highly associated with tumorigenesis and development. As intrinsic exchange activity regulators of Rho GTPases, Rho guanine nucleotide exchange factors (RhoGEFs) have been demonstrated to be closely involved in tumor development and received increasing attention. They mainly contain two families: the diffuse B-cell lymphoma (Dbl) family and the dedicator of cytokinesis (Dock) family. More and more emphasis has been paid to the Dbl family members for their abnormally high expression in various cancers and their correlation to poor prognosis. In this review, the common and distinctive structures of Dbl family members are discussed, and their roles in cancer are summarized with a focus on Ect2, Tiam1/2, P-Rex1/2, Vav1/2/3, Trio, KALRN, and LARG. Significantly, the strategies targeting Dbl family RhoGEFs are highlighted as novel therapeutic opportunities for cancer.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ao-Yu Cheng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zi-Ying Wang
- School of Biological Engineering, Tianjin University of Science&Technology, Tianjin 301617, China
| | - Jin-Mei Jin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bei Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying-Yun Guan
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Hao Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Xin Jiang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li-Jun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
4
|
Cao M, Peng B, Xu W, Chen P, Li H, Cheng Y, Chen H, Ye L, Xie J, Wang H, Ren L, Xiong L, Zhu J, Xu X, Geng L, Gong S. The Mechanism of miR-155/miR-15b Axis Contributed to Apoptosis of CD34+ Cells by Upregulation of PD-L1 in Myelodysplastic Syndromes. Mediterr J Hematol Infect Dis 2023; 15:e2023040. [PMID: 37435035 PMCID: PMC10332351 DOI: 10.4084/mjhid.2023.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/17/2023] [Indexed: 07/13/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of heterogeneous myeloid clonal diseases that are characterized by ineffective bone marrow hematopoiesis. Since studies have confirmed the significance of miRNAs in ineffective hematopoiesis in MDS, the current report elucidated the mechanism mediated by miR-155-5p. The bone marrow of MDS patients was collected to detect miR-155-5p and to analyze the correlation between miR-155-5p and clinicopathological variables. Isolated bone marrow CD34+ cells were transfected with lentiviral plasmids that interfere with miR-155-5p, followed by apoptosis analysis. Finally, miR-155-5p-targeted regulation of RAC1 expression was identified, as well as the interaction between RAC1 and CREB, the co-localization of RAC1 and CREB, and the binding of CREB to miR-15b. As measured, miR-155-5p was upregulated in the bone marrow of MDS patients. Further cell experiments validated that miR-155-5p promoted CD34+ cell apoptosis. miR-155-5p could reduce the transcriptional activity of miR-15b by inhibiting RAC1, dissociating the interaction between RAC1 and CREB, and inhibiting the activation of CREB. Upregulating RAC1, CREB, or miR-15b could reduce miR-155-5p-mediated apoptosis promotion on CD34+ cells. Additionally, miR-155-5p could force PD-L1 expression, and this effect was impaired by elevating RAC1, CREB, or miR-15b. In conclusion, miR-155-5p mediates PD-L1-mediated apoptosis of CD34+ cells in MDS by RAC1/CREB/miR-15b axis, thereby inhibiting bone marrow hematopoiesis.
Collapse
Affiliation(s)
- MeiWan Cao
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - BaoLing Peng
- Center for child health and mental health, Shenzhen Children’s Hospital, Shenzhen City, Guangdong Province, China
| | - WanFu Xu
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - PeiYu Chen
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - HuiWen Li
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - Yang Cheng
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - LiPing Ye
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - Jing Xie
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - HongLi Wang
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - Lu Ren
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - LiYa Xiong
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - JingNan Zhu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - XiangYe Xu
- Department of Hematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - LanLan Geng
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| | - SiTang Gong
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou City, Guangdong Province, 510623, China
| |
Collapse
|
5
|
Santos JC, Profitós-Pelejà N, Sánchez-Vinces S, Roué G. RHOA Therapeutic Targeting in Hematological Cancers. Cells 2023; 12:cells12030433. [PMID: 36766776 PMCID: PMC9914237 DOI: 10.3390/cells12030433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Primarily identified as an important regulator of cytoskeletal dynamics, the small GTPase Ras homolog gene family member A (RHOA) has been implicated in the transduction of signals regulating a broad range of cellular functions such as cell survival, migration, adhesion and proliferation. Deregulated activity of RHOA has been linked to the growth, progression and metastasis of various cancer types. Recent cancer genome-wide sequencing studies have unveiled both RHOA gain and loss-of-function mutations in primary leukemia/lymphoma, suggesting that this GTPase may exert tumor-promoting or tumor-suppressive functions depending on the cellular context. Based on these observations, RHOA signaling represents an attractive therapeutic target for the development of selective anticancer strategies. In this review, we will summarize the molecular mechanisms underlying RHOA GTPase functions in immune regulation and in the development of hematological neoplasms and will discuss the current strategies aimed at modulating RHOA functions in these diseases.
Collapse
Affiliation(s)
- Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Núria Profitós-Pelejà
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Salvador Sánchez-Vinces
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 01246-100, São Paulo, Brazil
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- Correspondence: ; Tel.: +34-935572835
| |
Collapse
|
6
|
Preclinical Efficacy and Toxicology Evaluation of RAC1 Inhibitor 1A-116 in Human Glioblastoma Models. Cancers (Basel) 2022; 14:cancers14194810. [PMID: 36230732 PMCID: PMC9562863 DOI: 10.3390/cancers14194810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Malignant gliomas are the most common primary central nervous system tumors in adults. Currently, this disease is associated with poor prognosis and is virtually incurable. There is a need to find novel targets and treatments to improve patient survival. This study shows the preclinical evaluation of 1A-116, a Rac1 inhibitor that showed in vitro antitumor activity on glioma cells. We also evaluated 1A-116 in vivo, showing a favorable toxicological profile and antitumor efficacy in an intracranial mouse tumor model. Altogether, our study provides important evidence of 1A-116 as a signal transduction-based precision therapy for glioma and also increases the evidence of Rac1 as a key molecular target in cancer. Abstract Malignant gliomas are the most common primary central nervous system tumor in adults. Despite current therapeutics, these tumors are associated with poor prognosis and a median survival of 16 to 19 months. This highlights the need for innovative treatments for this incurable disease. Rac1 has long been associated with tumor progression and plays a key role in glioma’s infiltrative and invasive nature. The aim of this study is to evaluate the 1A-116 molecule, a Rac1 inhibitor, as targeted therapy for this aggressive disease. We found that targeting Rac1 inhibits cell proliferation and cell cycle progression using different in vitro human glioblastoma models. Additionally, we evaluated 1A-116 in vivo, showing a favorable toxicological profile. Using in silico tools, 1A-116 is also predicted to penetrate the blood–brain barrier and present a favorable metabolic fate. In line with these results, 1A-116 i.p daily treatment resulted in a dose-dependent antitumor effect in an orthotopic IDH-wt glioma model. Altogether, our study provides a strong potential for clinical translation of 1A-116 as a signal transduction-based precision therapy for glioma and also increases the evidence of Rac1 as a key molecular target.
Collapse
|