1
|
Singh P, Doshi G, Bagwe Parab S. The intersection of GRK2 and PGE2 in rheumatoid arthritis: a comprehensive update on pathophysiology and treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04163-2. [PMID: 40261352 DOI: 10.1007/s00210-025-04163-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Rheumatoid arthritis (RA) has made significant progress in the treatment zone passing on from traditional disease-modifying anti-rheumatic drugs (DMARDs) to novel biologics and targeted synthetic agents with the goal of individualized therapy regimens. However, these novel biological treatments necessitate careful evaluation due to their effectiveness and side effects. In recent decades, new therapy methods have emerged to understand the underlying causes of RA better, highlighting the need to update current treatments. It is observed that in the context of RA pathophysiology, there was prolonged stimulation of the human prostaglandin E2 receptor 4 (EP4) by prostaglandin E2(PGE2), and also M2 macrophage polarization is promoted by PGE2 through the cyclic adenosine monophosphate - response element binding protein (cAMP-CREB) pathway which leads to the recruitment of G protein-coupled receptor kinase 2 (GRK2) to the membrane and, as a result, there is under expression of membrane-associated EP4. This review emphasizes the significant role of GRK2 in the pathophysiology of RA by regulating the PGE2-EP4 pathway, fibroblast-like synoviocyte (FLS) proliferation, and peroxisome proliferator-activated receptor gamma (PPAR γ) - Tyr473(Flt-1 transcription). Recent research has highlighted the regulatory function of PGE2 and its receptor, EP4, in initiating RA pathogenesis. Additionally, it discusses the mechanism of action supported by current literature, existing therapies, and novel drugs undergoing pre-clinical and clinical trials, which could help future researchers explore them in treating this ancient autoimmune disorder RA.
Collapse
Affiliation(s)
- Pankaj Singh
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, 400056, India
| | - Siddhi Bagwe Parab
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
2
|
Wang Y, Anesi JC, Panicker IS, Cook D, Bista P, Fang Y, Oqueli E. Neuroimmune Interactions and Their Role in Immune Cell Trafficking in Cardiovascular Diseases and Cancer. Int J Mol Sci 2025; 26:2553. [PMID: 40141195 PMCID: PMC11941982 DOI: 10.3390/ijms26062553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Sympathetic nerves innervate bone marrow and various immune organs, where norepinephrine-the primary sympathetic neurotransmitter-directly interacts with immune cells that express adrenergic receptors. This article reviewed the key molecular pathways triggered by sympathetic activation and explored how sympathetic activity influences immune cell migration. Norepinephrine serves as a chemoattractant for monocytes, macrophages, and stem cells, promoting the migration of myeloid cells while inhibiting the migration of lymphocytes at physiological concentrations. We also examined the role of immune cell infiltration in cardiovascular diseases and cancer. Evidence suggests that sympathetic activation increases myeloid cell infiltration into target tissues across various cardiovascular diseases, including atherosclerosis, hypertension, cardiac fibrosis, cardiac hypertrophy, arrhythmia, myocardial infarction, heart failure, and stroke. Conversely, inhibiting sympathetic activity may serve as a potential therapeutic strategy to treat these conditions by reducing macrophage infiltration. Furthermore, sympathetic activation promotes macrophage accumulation in cancer tissues, mirroring its effects in cardiovascular diseases, while suppressing T lymphocyte infiltration into cancerous sites. These changes contribute to increased cancer growth and metastasis. Thus, inhibiting sympathetic activation could help to protect against cancer by enhancing T cell infiltration and reducing macrophage presence in tumors.
Collapse
Affiliation(s)
- Yutang Wang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Jack C. Anesi
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Indu S. Panicker
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Darcy Cook
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Prapti Bista
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Yan Fang
- Discipline of Life Science, Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Ernesto Oqueli
- Cardiology Department, Grampians Health Ballarat, Ballarat, VIC 3353, Australia
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC 3217, Australia
| |
Collapse
|
3
|
Liu XR, Li SF, Mei WY, Liu XD, Zhou RB. Isorhamnetin Downregulates MMP2 and MMP9 to Inhibit Development of Rheumatoid Arthritis through SRC/ERK/CREB Pathway. Chin J Integr Med 2024; 30:299-310. [PMID: 38212502 DOI: 10.1007/s11655-023-3753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To investigate the effect of isorhamnetin on the pathology of rheumatoid arthritis (RA). METHODS Tumor necrosis factor (TNF)- α -induced fibroblast-like synoviocytes (FLS) was exposed to additional isorhamnetin (10, 20 and 40 µ mol/L). Overexpression vectors for matrix metalloproteinase-2 (MMP2) or MMP9 or SRC were transfected to explore their roles in isorhamnetin-mediated RA-FLS function. RA-FLS viability, migration, and invasion were evaluated. Moreover, a collagen-induced arthritis (CIA) rat model was established. Rats were randomly divided to sham, CIA, low-, medium-, and high-dosage groups using a random number table (n=5 in each group) and administed with normal saline or additional isorhamnetin [2, 10, and 20 mg/(kg·day)] for 4 weeks, respectively. Arthritis index was calculated and synovial tissue inflammation was determined in CIA rats. The levels of MMP2, MMP9, TNF-α, interleukin-6 (IL-6), and IL-1 β, as well as the phosphorylation levels of SRC, extracellular regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding (CREB), were detected in RA-FLS and synovial tissue. Molecular docking was also used to analyze the binding of isorhamnetin to SRC. RESULTS In in vitro studies, isorhamnetin inhibited RA-FLS viability, migration and invasion (P<0.05). Isorhamnetin downregulated the levels of MMP2, MMP9, TNF-α, IL-6, and IL-1 β in RA-FLS (P<0.05). The overexpression of either MMP2 or MMP9 reversed isorhamnetin-inhibited RA-FLS migration and invasion, as well as the levels of TNF-α, IL-6, and IL-1 β (P<0.05). Furthermore, isorhamnetin bound to SRC and reduced the phosphorylation of SRC, ERK, and CREB (P<0.05). SRC overexpression reversed the inhibitory effect of isorhamnetin on RA-FLS viability, migration and invasion, as well as the negative regulation of MMP2 and MMP9 (P<0.05). In in vivo studies, isorhamnetin decreased arthritis index scores (P<0.05) and alleviated synovial inflammation. Isorhamnetin reduced the levels of MMP2, MMP9, TNF-α, IL-6, and IL-1 β, as well as the phosphorylation of SRC, ERK, and CREB in synovial tissue (P<0.05). Notably, the inhibitory effect of isorhamnetin was more pronounced at higher concentrations (P<0.05). CONCLUSION Isorhamnetin exhibited anti-RA effects through modulating SRC/ERK/CREB and MMP2/MMP9 signaling pathways, suggesting that isorhamnetin may be a potential therapeutic agent for RA.
Collapse
Affiliation(s)
- Xiao-Rong Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Shuo-Fu Li
- Department of Orthopaedics, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Wen-Ya Mei
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiang-Dan Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ri-Bao Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| |
Collapse
|
4
|
Ge M, Wu L, He F, Tai Y, Fang R, Han D, Guo P, Liu H, Hu Y, Xu S, Wei W, Wang Q. CP-25 inhibits the hyperactivation of rheumatic synoviocytes by suppressing the switch in G αs-G αi coupling to the β 2-adrenergic receptor. Cell Commun Signal 2023; 21:346. [PMID: 38037039 PMCID: PMC10688045 DOI: 10.1186/s12964-023-01358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
In essence, the β2 adrenergic receptor (β2AR) plays an antiproliferative role by increasing the intracellular cyclic 3',5'-adenosine monophosphate (cAMP) concentration through Gαs coupling, but interestingly, β2AR antagonists are able to effectively inhibit fibroblast-like synoviocytes (FLSs) proliferation, thus ameliorating experimental RA, indicating that the β2AR signalling pathway is impaired in RA FLSs via unknown mechanisms. The local epinephrine (Epi) level was found to be much higher in inflammatory joints than in normal joints, and high-level stimulation with Epi or isoproterenol (ISO) directly promoted FLSs proliferation and migration due to impaired β2AR signalling and cAMP production. By applying inhibitor of receptor internalization, and small interfering RNA (siRNA) of Gαs and Gαi, and by using fluorescence resonance energy transfer and coimmunoprecipitation assays, a switch in Gαs-Gαi coupling to β2AR was observed in inflammatory FLSs as well as in FLSs with chronic ISO stimulation. This Gαi coupling was then revealed to be initiated by G protein coupled receptor kinase 2 (GRK2) but not β-arrestin2 or protein kinase A-mediated phosphorylation of β2AR. Inhibiting the activity of GRK2 with the novel GRK2 inhibitor paeoniflorin-6'-O-benzene sulfonate (CP-25), a derivative of paeoniflorin, or the accepted GRK2 inhibitor paroxetine effectively reversed the switch in Gαs-Gαi coupling to β2AR during inflammation and restored the intracellular cAMP level in ISO-stimulated FLSs. As expected, CP-25 significantly inhibited the hyperplasia of FLSs in a collagen-induced arthritis (CIA) model (CIA FLSs) and normal FLSs stimulated with ISO and finally ameliorated CIA in rats. Together, our findings revealed the pathological changes in β2AR signalling in CIA FLSs, determined the underlying mechanisms and identified the pharmacological target of the GRK2 inhibitor CP-25 in treating CIA. Video Abstract.
Collapse
Affiliation(s)
- Mingli Ge
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Li Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Feng He
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Ruhong Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Dafei Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Paipai Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Bengbu, 233030, China
| | - Yong Hu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Shenglin Xu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, 230032, China.
| |
Collapse
|
5
|
Pongratz G, Straub RH. [Role of the sympathetic nervous system in chronic inflammation]. Z Rheumatol 2023:10.1007/s00393-023-01387-6. [PMID: 37488245 DOI: 10.1007/s00393-023-01387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 07/26/2023]
Abstract
In this review article the current model of the interaction between the sympathetic nervous system (SNS) and the immune system in the context of chronic inflammation is presented. Mechanisms in the interaction between the SNS and the immune system are shown, which are similar for all disease entities: 1) the biphasic effect of the sympathetic system on the inflammatory response with a proinflammatory, stimulating effect before and during the activation of the immune system (early) and a more inhibitory effect in late phases of immune activation (chronic). 2) The interruption of communication between immune cells and the brain by withdrawal of sympathetic nerve fibers from areas of inflammation, such as the spleen, lymph nodes or peripheral foci of inflammation. 3) The local replacement of catecholamines by neurotransmitter-producing cells to fine-tune the local immune response independently of the brain. 4) Increased activity of the SNS due to an imbalance of the autonomic nervous system at the systemic level, which provides an explanation for known disease sequelae and comorbidities due to the long duration of chronic inflammatory reactions, such as increased cardiovascular risk with hypertension, diabetes mellitus and catabolic metabolism. The understanding of neuroimmune interactions can lead to new therapeutic approaches, e.g., a stimulation of beta-adrenergic and even more an inhibition of alpha-adrenergic receptors or a restoration of the autonomic balance in the context of arthritis ) can make an anti-inflammatory contribution (more influence of the vagus nerve); however, in order to translate the theoretical findings into clinical action that is beneficial for the patient, controlled interventional studies are required.
Collapse
Affiliation(s)
- Georg Pongratz
- Abteilung für Rheumatologie und klinische Immunologie der Klinik für Gastroenterologie und interventionelle Endoskopie, Krankenhaus Barmherzige Brüder Regensburg, Prüfeninger Str. 86, 93049, Regensburg, Deutschland.
- Medizinische Fakultät, der Universität Regensburg, Regensburg, Deutschland.
| | - Rainer H Straub
- Labor für Experimentelle Rheumatologie und Neuroendokrino-Immunologie, Klinik und Poliklinik für Innere Medizin I, Universitätsklinikum, Regensburg, Deutschland
| |
Collapse
|
6
|
Pongratz G, Straub RH. Chronic Effects of the Sympathetic Nervous System in Inflammatory Models. Neuroimmunomodulation 2023; 30:113-134. [PMID: 37231902 DOI: 10.1159/000530969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
The immune system is embedded in a network of regulatory systems to keep homeostasis in case of an immunologic challenge. Neuroendocrine immunologic research has revealed several aspects of these interactions over the past decades, e.g., between the autonomic nervous system and the immune system. This review will focus on evidence revealing the role of the sympathetic nervous system (SNS) in chronic inflammation, like colitis, multiple sclerosis, systemic sclerosis, lupus erythematodes, and arthritis with a focus on animal models supported by human data. A theory of the contribution of the SNS in chronic inflammation will be presented that spans these disease entities. One major finding is the biphasic nature of the sympathetic contribution to inflammation, with proinflammatory effects until the point of disease outbreak and mainly anti-inflammatory influence thereafter. Since sympathetic nerve fibers are lost from sites of inflammation during inflammation, local cells and immune cells achieve the capability to endogenously produce catecholamines to fine-tune the inflammatory response independent of brain control. On a systemic level, it has been shown across models that the SNS is activated in inflammation as opposed to the parasympathetic nervous system. Permanent overactivity of the SNS contributes to many of the known disease sequelae. One goal of neuroendocrine immune research is defining new therapeutic targets. In this respect, it will be discussed that at least in arthritis, it might be beneficial to support β-adrenergic and inhibit α-adrenergic activity besides restoring autonomic balance. Overall, in the clinical setting, we now need controlled interventional studies to successfully translate the theoretical knowledge into benefits for patients.
Collapse
Affiliation(s)
- Georg Pongratz
- Department of Gastroenterology, Division of Rheumatology and Clinical Immunology, St. John of God Hospital, Regensburg, Germany
- Medical Faculty of the University of Regensburg, Regensburg, Germany
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrino-Immunology, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Cheng X, Lowin T, Honke N, Pongratz G. Components of the sympathetic nervous system as targets to modulate inflammation - rheumatoid arthritis synovial fibroblasts as neuron-like cells? J Inflamm (Lond) 2023; 20:9. [PMID: 36918850 PMCID: PMC10015726 DOI: 10.1186/s12950-023-00336-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Catecholamines are major neurotransmitters of the sympathetic nervous system (SNS) and they are of pivotal importance in regulating numerous physiological and pathological processes. Rheumatoid arthritis (RA) is influenced by the activity of the SNS and its neurotransmitters norepinephrine (NE) and dopamine (DA) and early sympathectomy alleviates experimental arthritis in mice. In contrast, late sympathectomy aggravates RA, since this procedure eliminates anti-inflammatory, tyrosine hydroxylase (TH) positive cells that appear in the course of RA. While it has been shown that B cells can take up, degrade and synthesize catecholamines it is still unclear whether this also applies to synovial fibroblasts, a mesenchymal cell that is actively engaged in propagating inflammation and cartilage destruction in RA. Therefore, this study aims to present a detailed description of the catecholamine pathway and its influence on human RA synovial fibroblasts (RASFs). RESULTS RASFs express all catecholamine-related targets including the synthesizing enzymes TH, DOPA decarboxylase, dopamine beta-hydroxylase, and phenylethanolamine N-methyltransferase. Furthermore, vesicular monoamine transporters 1/2 (VMAT1/2), dopamine transporter (DAT) and norepinephrine transporter (NET) were detected. RASFs are also able to degrade catecholamines as they express monoaminoxidase A and B (MAO-A/MAO-B) and catechol-O-methyltransferase (COMT). TNF upregulated VMAT2, MAO-B and NET levels in RASFs. DA, NE and epinephrine (EPI) were produced by RASFs and extracellular levels were augmented by either MAO, COMT, VMAT or DAT/NET inhibition but also by tumor necrosis factor (TNF) stimulation. While exogenous DA decreased interleukin-6 (IL-6) production and cell viability at the highest concentration (100 μM), NE above 1 μM increased IL-6 levels with a concomitant decrease in cell viability. MAO-A and MAO-B inhibition had differential effects on unstimulated and TNF treated RASFs. The MAO-A inhibitor clorgyline fostered IL-6 production in unstimulated but not TNF stimulated RASFs (10 nM-1 μM) while reducing IL-6 at 100 μM with a dose-dependent decrease in cell viability in both groups. The MAO-B inhibitor lazabemide hydrochloride did only modestly decrease cell viability at 100 μM while enhancing IL-6 production in unstimulated RASFs and decreasing IL-6 in TNF stimulated cells. CONCLUSIONS RASFs possess a complete and functional catecholamine machinery whose function is altered under inflammatory conditions. Results from this study shed further light on the involvement of sympathetic neurotransmitters in RA pathology and might open therapeutic avenues to counteract inflammation with the MAO enzymes being key candidates.
Collapse
Affiliation(s)
- Xinkun Cheng
- Clinic for Rheumatology & Hiller Research Center, Life Science Center, University Hospital Duesseldorf, Merowingerplatz 1A, 40225, Duesseldorf, Germany.,Department of Orthopedics, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Torsten Lowin
- Clinic for Rheumatology & Hiller Research Center, Life Science Center, University Hospital Duesseldorf, Merowingerplatz 1A, 40225, Duesseldorf, Germany.
| | - Nadine Honke
- Clinic for Rheumatology & Hiller Research Center, Life Science Center, University Hospital Duesseldorf, Merowingerplatz 1A, 40225, Duesseldorf, Germany
| | - Georg Pongratz
- Clinic for Rheumatology & Hiller Research Center, Life Science Center, University Hospital Duesseldorf, Merowingerplatz 1A, 40225, Duesseldorf, Germany. .,Center for Rheumatologic Rehabilitation, Asklepios Hospital Bad Abbach, Medical Faculty of the University of Regensburg, 93077, Bad Abbach, Germany. .,Medical Faculty of the University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|