1
|
Rezaei A, Moqadami A, Khalaj-Kondori M. Minocycline as a prospective therapeutic agent for cancer and non-cancer diseases: a scoping review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2835-2848. [PMID: 37991540 DOI: 10.1007/s00210-023-02839-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/05/2023] [Indexed: 11/23/2023]
Abstract
Minocycline is an FDA-approved secondary-generation tetracycline antibiotic. It is a synthetic antibiotic having many biological effects, such as antioxidant, anti-inflammatory, anti-cancer, and neuroprotective functions. This study discusses the pharmacological mechanisms of preventive and therapeutic effects of minocycline. Specifically, it provides a comprehensive overview of the molecular pathways by which minocycline acts on the different cancers, including ovarian, breast, glioma, colorectal, liver, pancreatic, lung, prostate, melanoma, head and neck, leukemia, and non-cancer diseases such as Alzheimer's disease, Parkinson, schizophrenia, multiple sclerosis, Huntington, polycystic ovary syndrome, and coronavirus disease 19. Minocycline may be a potential medication for these disorders due to its strong blood-brain barrier penetrance. It is also widely accepted as a specific medication, has a well-known side-effect characteristic, is reasonably priced, making it appropriate for continuous use in managing diseases, and has been demonstrated as an oral approach because it is effectively absorbed and accomplished almost all of the body's parts.
Collapse
Affiliation(s)
- Abedeh Rezaei
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amin Moqadami
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology¸ Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
2
|
Gallardo-Fernandez M, Garcia AR, Hornedo-Ortega R, Troncoso AM, Garcia-Parrilla MC, Brito MA. In vitro study of the blood-brain barrier transport of bioactives from Mediterranean foods. Food Funct 2024; 15:3420-3432. [PMID: 38497922 DOI: 10.1039/d3fo04760a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The Mediterranean diet (MD), characterized by olive oil, olives, fruits, vegetables, and wine intake, is associated with a reduced risk of dementia. These foods are rich in bioactives with neuroprotective and antioxidant properties, including hydroxytyrosol (HT), tyrosol (TYRS), serotonin (SER) and protocatechuic acid (PCA), a phenolic acid metabolite of anthocyanins. It remains to be established if these molecules cross the blood-brain barrier (BBB), a complex interface that strictly controls the entrance of molecules into the brain. We aimed to assess the ability of tyrosine (TYR), HT, TYRS, PCA and SER to pass through the BBB without disrupting its properties. Using Human Brain Microvascular Endothelial Cells as an in vitro model of the BBB, we assessed its integrity by transendothelial electrical resistance, paracellular permeability and immunocytochemical assays of the adherens junction protein β-catenin. The transport across the BBB was evaluated by ultra-high-performance liquid chromatography high resolution mass spectrometry. Results show that tested bioactives did not impair BBB integrity regardless of the concentration evaluated. Additionally, all of them cross the BBB, with the following percentages: HT (∼70%), TYR (∼50%), TYRS (∼30%), SER (∼30%) and PCA (∼9%). These results provide a basis for the MD neuroprotective role.
Collapse
Affiliation(s)
- Marta Gallardo-Fernandez
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - Ana Rita Garcia
- imed-Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ruth Hornedo-Ortega
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - Ana M Troncoso
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - M Carmen Garcia-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla. C/Profesor García González n° 2. Sevilla 41012, Spain.
| | - M Alexandra Brito
- imed-Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
3
|
Bramatti I, Aschner M, Branco V, Carvalho C. Exposure of human glioblastoma cells to thimerosal inhibits the thioredoxin system and decreases tumor growth-related factors. Toxicol Appl Pharmacol 2024; 484:116844. [PMID: 38325586 DOI: 10.1016/j.taap.2024.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Glioblastoma multiforme (GBM) is the most common, aggressive, and fatal primary malignant brain tumor in adults. The therapeutic efficacy of temozolomide (TMZ) is limited owing to frequent treatment resistance. The latter is in part related to the overexpression of redox systems such as the thioredoxin system. This system is fundamental for cell survival and proliferation, regulating hypoxia inducible factor-1alpha (HIF-1α) activity, in turn controlling vascular endothelial growth factor (VEGF), which is indispensable for tumor invasiveness, angiogenesis and microenvironment maintenance. HIF-1α can also be regulated by the signal transducer and activator of transcription 3 (STAT3), an oncogene stimulated by pro-inflammatory cytokines and growth factors. The thioredoxin system has several known inhibitors including mercury compounds such as Thimerosal (TmHg) which readily crosses the blood-brain barrier (BBB) and accumulates in the brain. Though previously used in various applications epidemiological evidence on TmHg's neurotoxicity is lacking. The objective of this study was to verify whether thimerosal is a suitable candidate for hard repurposing to control glioblastoma; therefore, the effects of this molecule were evaluated in human GBM (U87) cells. Our novel results show that TmHg decreased cellular viability (>50%) and migration (up to 90% decrease in wound closure), reduced thioredoxin reductase (TrxR/TXNRD1) and thioredoxin (Trx) activity, and increased reactive oxygen species (ROS) generation. Moreover, TmHg reduced HIF-1α expression (35%) as observed by immunofluorescence. Co-exposure of U87 cells to TmHg and TMZ reduced HIF-1α, VEGF, and phosphorylated STAT3. Consequently, TmHg alone or combined with chemotherapeutic drugs can reduce neoangiogenesis and ameliorate glioblastoma progression and treatment.
Collapse
Affiliation(s)
- Isabella Bramatti
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cristina Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
4
|
Kalinkin AI, Sigin VO, Kuznetsova EB, Ignatova EO, Vinogradov II, Vinogradov MI, Vinogradov IY, Zaletaev DV, Nemtsova MV, Kutsev SI, Tanas AS, Strelnikov VV. Epigenomic Profiling Advises Therapeutic Potential of Leukotriene Receptor Inhibitors for a Subset of Triple-Negative Breast Tumors. Int J Mol Sci 2023; 24:17343. [PMID: 38139172 PMCID: PMC10743620 DOI: 10.3390/ijms242417343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive molecular subtype, with a poor survival rate compared to others subtypes. For a long time, chemotherapy was the only systemic treatment for TNBC, and the identification of actionable molecular targets might ultimately improve the prognosis for TNBC patients. We performed a genome-wide analysis of DNA methylation at CpG islands on a collection of one hundred ten breast carcinoma samples and six normal breast tissue samples using reduced representation bisulfite sequencing with the XmaI restriction enzyme (XmaI-RRBS) and identified a subset of TNBC samples with significant hypomethylation at the LTB4R/LTB4R2 genes' CpG islands, including CpG dinucleotides covered with cg12853742 and cg21886367 HumanMethylation 450K microarray probes. Abnormal DNA hypomethylation of this region in TNBC compared to normal samples was confirmed by bisulfite Sanger sequencing. Gene expression generally anticorrelates with promoter methylation, and thus, the promoter hypomethylation detected and confirmed in our study might be revealed as an indirect marker of high LTB4R/LTB4R2 expression using a simple methylation-sensitive PCR test. Analysis of RNA-seq expression and DNA methylation data from the TCGA dataset demonstrates that the expression of the LTB4R and LTB4R2 genes significantly negatively correlates with DNA methylation at both CpG sites cg12853742 (R = -0.4, p = 2.6 × 10-6; R = -0.21, p = 0.015) and cg21886367 (R = -0.45, p = 7.3 × 10-8; R = -0.24, p = 0.005), suggesting the upregulation of these genes in tumors with abnormal hypomethylation of their CpG island. Kaplan-Meier analysis using the TCGA-BRCA gene expression and clinical data revealed poorer overall survival for TNBC patients with an upregulated LTB4R. To this day, only the leukotriene inhibitor LY255283 has been tested on an MCF-7/DOX cell line, which is a luminal A breast cancer molecular subtype. Other studies compare the effects of Montelukast and Zafirlukast (inhibitors of the cysteinyl leukotriene receptor, which is different from LTB4R/LTB4R2) on the MDA-MB-231 (TNBC) cell line, with high methylation and low expression levels of LTB4R. In our study, we assess the therapeutic effects of various drugs (including leukotriene receptor inhibitors) with the DepMap gene effect and drug sensitivity data for TNBC cell lines with hypomethylated and upregulated LTB4R/LTB4R2 genes. LY255283, Minocycline, Silibinin, Piceatannol, Mitiglinide, 1-Azakenpaullone, Carbetocin, and Pim-1-inhibitor-2 can be considered as candidates for the additional treatment of TNBC patients with tumors demonstrating LTB4R/LTB4R2 hypomethylation/upregulation. Finally, our results suggest that the epigenetic status of leukotriene B4 receptors is a novel, potential, predictive, and prognostic biomarker for TNBC. These findings might improve individualized therapy for TNBC patients by introducing new therapeutic adjuncts as anticancer agents.
Collapse
Affiliation(s)
- Alexey I. Kalinkin
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Vladimir O. Sigin
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Ekaterina B. Kuznetsova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Ekaterina O. Ignatova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
- Nikolay Nikolaevich Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Ilya I. Vinogradov
- Regional Clinical Oncology Dispensary, 390011 Ryazan, Russia;
- Department of Histology, Pathological Anatomy and Medical Genetics, Ryazan State Medical University, 390026 Ryazan, Russia; (M.I.V.); (I.Y.V.)
| | - Maxim I. Vinogradov
- Department of Histology, Pathological Anatomy and Medical Genetics, Ryazan State Medical University, 390026 Ryazan, Russia; (M.I.V.); (I.Y.V.)
| | - Igor Y. Vinogradov
- Department of Histology, Pathological Anatomy and Medical Genetics, Ryazan State Medical University, 390026 Ryazan, Russia; (M.I.V.); (I.Y.V.)
| | - Dmitry V. Zaletaev
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Marina V. Nemtsova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| | - Sergey I. Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Alexander S. Tanas
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| | - Vladimir V. Strelnikov
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (V.O.S.); (E.B.K.); (E.O.I.); (D.V.Z.); (M.V.N.); (S.I.K.); (A.S.T.); (V.V.S.)
| |
Collapse
|
5
|
Caetano S, Garcia AR, Figueira I, Brito MA. MEF2C and miR-194-5p: New Players in Triple Negative Breast Cancer Tumorigenesis. Int J Mol Sci 2023; 24:14297. [PMID: 37762600 PMCID: PMC10531597 DOI: 10.3390/ijms241814297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Among breast cancer (BC) subtypes, the most aggressive is triple negative BC (TNBC), which is prone to metastasis. We previously found that microRNA (miR)-194-5p is downregulated at the early stages of TNBC brain metastasis development. Additionally, the transcription factor myocyte enhancer factor 2 (MEF2)C, a bioinformatically predicted miR-194-5p target, was increasingly expressed throughout TNBC brain metastasis formation and disease severity. However, the contributions of these two players to malignant cells' features remain undetermined. This study aimed at disclosing the role of miR-194-5p and MEF2C in TNBC tumorigenesis. The transfection of 4T1 cells with a silencer for MEF2C or with a pre-miRNA for miR-194-5p was employed to study TNBC cells' phenotypic alterations regarding epithelial and mesenchymal markers, as well as migratory capability alterations. MEF2C-silenced cells presented a decline in both vimentin and cytokeratin expression, whereas the overexpression of miR-194-5p promoted an increase in cytokeratin and a reduction in vimentin, reflecting the acquisition of an epithelial phenotype. Both treatments reduced TNBC cells' migration. These results suggest that MEF2C may determine TNBC cells' invasive properties by partially determining the occurrence of epithelial-mesenchymal transition, while the overexpression of miR-194-5p promotes a decline in TNBC cells' aggressive behavior and reinforces this miRNA's role as a tumor suppressor in TNBC.
Collapse
Affiliation(s)
- Sara Caetano
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (S.C.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana Rita Garcia
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (S.C.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Inês Figueira
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (S.C.); (A.R.G.); (I.F.)
- Farm-ID—Faculty of Pharmacy Research and Development Association, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Alexandra Brito
- iMed—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (S.C.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
6
|
Garcia AR, Mendes A, Custódia C, Faria CC, Barata JT, Malhó R, Figueira I, Brito MA. Abrogating Metastatic Properties of Triple-Negative Breast Cancer Cells by EGFR and PI3K Dual Inhibitors. Cancers (Basel) 2023; 15:3973. [PMID: 37568789 PMCID: PMC10416979 DOI: 10.3390/cancers15153973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a devastating BC subtype. Its aggressiveness, allied to the lack of well-defined molecular targets, usually culminates in the appearance of metastases that account for poor prognosis, particularly when they develop in the brain. Nevertheless, TNBC has been associated with epidermal growth factor receptor (EGFR) overexpression, leading to downstream phosphoinositide 3-kinase (PI3K) signaling activation. We aimed to unravel novel drug candidates for TNBC treatment based on EGFR and/or PI3K inhibition. Using a highly metastatic TNBC cell line with brain tropism (MDA-MB-231 Br4) and a library of 27 drug candidates in silico predicted to inhibit EGFR, PI3K, or EGFR plus PI3K, and to cross the blood-brain barrier, we evaluated the effects on cell viability. The half maximal inhibitory concentration (IC50) of the most cytotoxic ones was established, and cell cycle and death, as well as migration and EGFR pathway intervenient, were further evaluated. Two dual inhibitors emerged as the most promising drugs, with the ability to modulate cell cycle, death, migration and proliferation, morphology, and PI3K/AKT cascade players such as myocyte enhancer factor 2C (MEF2C) and forkhead box P1 (FOXP1). This work revealed EGFR/PI3K dual inhibitors as strong candidates to tackle brain metastatic TNBC cells.
Collapse
Affiliation(s)
- Ana Rita Garcia
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Avilson Mendes
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Carlos Custódia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Cláudia C. Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Av. Prof. Egas Moniz, 1649-035 Lisbon, Portugal
| | - João T. Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Rui Malhó
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1746-016 Lisbon, Portugal
| | - Inês Figueira
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Farm-ID—Faculty of Pharmacy Association for Research and Development, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Alexandra Brito
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|