1
|
Mitra A, Pandijothi V, Paul S. Computational insight into the peptide-based inhibition of α-cobratoxin. Phys Chem Chem Phys 2024; 26:28274-28287. [PMID: 39499553 DOI: 10.1039/d4cp03408b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Snakebite envenoming results in the death of thousands of people each year and has been classified as a neglected tropical disease by the World Health Organization (WHO). The toxins released into the bloodstream of the victim bind to the nicotinic acetylcholine receptor and restrict transmission of nerve impulses leading to paralysis and cardiac arrest. Conventional antibody-based treatments often have adverse side effects or are difficult to perform. Hence, efforts are underway to devise alternative forms of treatment that address these therapeutic shortcomings. Peptide-based inhibitors have recently gained attention due to their high specificity and ease of preparation. Here, we explore the mechanism of a peptide inhibitor of α-cobratoxin using all-atom molecular dynamics (MD) simulations. We also quantify the energetics of the toxin-peptide dissociation process using the non-equilibrium steered MD technique. Our study reveals that the inhibitor migrates close to Loop-II of α-cobratoxin and alters its dimerization tendency. From energy studies, we found that the peptide first binds to one unit of α-cobratoxin in a particular orientation, followed by the binding of a second toxin molecule, which effectively masks the residues that interact with the nicotinic acetylcholine receptor. Our work provides atomic-level insight into the inhibition process that can be utilized in the future design of inhibitors with superior binding capabilities.
Collapse
Affiliation(s)
- Aritra Mitra
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Viswas Pandijothi
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India.
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India.
| |
Collapse
|
2
|
Chen L, He Y, Lan J, Li Z, Gu D, Nie W, Zhang T, Ding Y. Advancements in nano drug delivery system for liver cancer therapy based on mitochondria-targeting. Biomed Pharmacother 2024; 180:117520. [PMID: 39395257 DOI: 10.1016/j.biopha.2024.117520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
Based on poor efficacy and non-specific toxic side effects of conventional drug therapy for liver cancer, nano-based drug delivery system (NDDS) offers the advantage of drug targeting delivery. Subcellular targeting of nanomedicines on this basis enables more precise and effective termination of tumor cells. Mitochondria, as the crucial cell powerhouse, possesses distinctive physical and chemical properties in hepatoma cells different from that in hepatic cells, and controls apoptosis, tumor metastasis, and cellular drug resistance in hepatoma cells through metabolism and dynamics, which serves as a good choice for drug targeting delivery. Thus, mitochondria-targeting NDDS have become a recent research focus, showcasing the design of cationic nanoparticles, metal nanoparticles, mitochondrial peptide modification and so on. Although many studies have shown good results regarding anti-tumor efficacy, it is a long way to go before the successful translation of clinical application. Based on these, we summarized the specificity and importance of mitochondria in hepatoma cells, and reviewed the current mitochondria-targeting NDDS for liver cancer therapy, aiming to provide a better understanding for current development process, strengths and weaknesses of mitochondria-targeting NDDS as well as informing subsequent improvements and developments.
Collapse
Affiliation(s)
- Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yitian He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Donghao Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenlong Nie
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Filippenkov IB, Glazova NY, Sebentsova EA, Stavchansky VV, Andreeva LA, Myasoedov NF, Levitskaya NG, Limborska SA, Dergunova LV. Changes of Transcriptomic Activity in Rat Brain Cells under the Influence of Synthetic Adrenocorticotropic Hormone-Like Peptides. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1643-1656. [PMID: 39418522 DOI: 10.1134/s0006297924090104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024]
Abstract
Synthetic peptides have a wide range of clinical effects. Of particular interest are peptides based on adrenocorticotropic hormone (ACTH) both as already used and as potential drugs for preventing consequences of cerebral ischemia. However, it is necessary to study influence of the peptide on the brain cells under normal physiological conditions, including understanding the risks of their use. Here, we used high-throughput RNA sequencing (RNA-Seq) to identify differentially expressed genes (DEGs) in the brain frontal cortex of rat receiving intraperitoneal administration of ACTH-like peptides ACTH(4-7)PGP (Semax) and ACTH(6-9)PGP, or saline. We identified 258 and 228 DEGs, respectively, with the fold change > 1.5 and Padj < 0.05 at 22.5 h after the first administration of Semax and ACTH(6-9)PGP. Metabolic pathways, characterizing both common and specific effects of the peptides on the transcriptome were identified. Both peptides predominantly caused decrease in expression of the genes associated with the immune system. At the same time, when comparing the effects of ACTH(6-9)PGP relative to Semax, DEGs were identified that characterized the main differences in the effects of the peptides. These genes were mostly downregulated and associated with neurosignaling systems and regulation of ion channels, thus characterizing differences in the effects of the peptides. Our data show how differences in the structure of ACTH derivatives are associated with the changes in the brain cell transcriptome following exposure to these related peptides. Furthermore, our results demonstrate that when studying influence of regulatory peptides on transcriptome under pathological conditions, it is necessary to take into account their actions under normal physiological conditions.
Collapse
Affiliation(s)
| | - Nataliya Y Glazova
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena A Sebentsova
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | | | | | - Nataliya G Levitskaya
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | | |
Collapse
|
4
|
Stavchansky VV, Yuzhakov VV, Sevan'kaeva LE, Fomina NK, Koretskaya AE, Denisova AE, Mozgovoy IV, Gubsky LV, Filippenkov IB, Myasoedov NF, Limborska SA, Dergunova LV. Melanocortin Derivatives Induced Vascularization and Neuroglial Proliferation in the Rat Brain under Conditions of Cerebral Ischemia. Curr Issues Mol Biol 2024; 46:2071-2092. [PMID: 38534749 DOI: 10.3390/cimb46030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Stroke remains the second leading cause of death worldwide. The development of new therapeutic agents focused on restoring vascular function and neuroprotection of viable tissues is required. In this study the neuroprotective activity of melanocortin-like ACTH(4-7)PGP and ACTH(6-9)PGP peptides was investigated in rat brain at 24 h after transient middle cerebral artery occlusion (tMCAO). The severity of ischemic damage, changes in the proliferative activity of neuroglial cells and vascularization of rat brain tissue were analyzed. The administration of peptides resulted in a significant increase in the volume density of neurons in the perifocal zone of infarction compared to rats subjected to ischemia and receiving saline. Immunohistochemical analysis of the proliferative activity of neuroglia cells using PCNA antibodies showed a significant increase in the number of proliferating cells in the penumbra and in the intact cerebral cortex of rats receiving peptide treatment. The effect of peptides on vascularization was examined using CD31 antibodies under tMCAO conditions, revealing a significant increase in the volume density of vessels and their sizes in the penumbra after administration of ACTH(4-7)PGP and ACTH(6-9)PGP. These findings confirm the neuroprotective effect of peptides due to the activation of neuroglia proliferation and the enhancement of collateral blood flow.
Collapse
Affiliation(s)
- Vasily V Stavchansky
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Vadim V Yuzhakov
- A. Tsyb Medical Radiological Research Center-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4B, Obninsk 249036, Russia
| | - Larisa E Sevan'kaeva
- A. Tsyb Medical Radiological Research Center-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4B, Obninsk 249036, Russia
| | - Natalia K Fomina
- A. Tsyb Medical Radiological Research Center-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4B, Obninsk 249036, Russia
| | - Anastasia E Koretskaya
- A. Tsyb Medical Radiological Research Center-Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Koroleva Str. 4B, Obninsk 249036, Russia
| | - Alina E Denisova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russia
| | - Ivan V Mozgovoy
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Leonid V Gubsky
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russia
| | - Ivan B Filippenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Nikolay F Myasoedov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Svetlana A Limborska
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| | - Lyudmila V Dergunova
- National Research Center "Kurchatov Institute", Kurchatov Sq. 2, Moscow 123182, Russia
| |
Collapse
|
5
|
Canè C, Lucignano R, Di Somma A, Liccardo M, Iannuzzi C, Duilio A, Picone D. Release of a novel peptide from ferritin nanocages: A new tool for therapeutic applications. Biochim Biophys Acta Gen Subj 2024; 1868:130525. [PMID: 38043914 DOI: 10.1016/j.bbagen.2023.130525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
The development of new drug delivery systems for targeted chemotherapy release in cancer cells represents a very promising tool. In this contest, protein-based nanocages have considerable potential as drug delivery devices. Notably, ferritin has emerged as an excellent candidate due to its unique architecture, surface properties and high biocompatibility. A promising strategy might then involve ferritin cargos for specifical release of AntiMicrobial Peptides endowed with anticancer activity to cancer cells. In this paper, we encapsulated the TRIL analogue of Temporin-L peptide within a ferritin nanocage and evaluated the cargo biological properties. The results demonstrated a reduced haemolytic activity of the peptide and a selective cytotoxicity activity on cancer cells likely mediated by oxidative stress while having no effects on non-tumoral cells. The combination of the properties of ferritin with TRIL, might open up the way to the development of novel peptide delivery systems for future pharmaceutical applications.
Collapse
Affiliation(s)
- Carolina Canè
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy
| | - Rosanna Lucignano
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore", Via G. Salvatore 486, 80131 Napoli, Italy.
| | - Maria Liccardo
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Clara Iannuzzi
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy; National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy.
| |
Collapse
|
6
|
Ughade S, Rana S, Nadeem M, Kumthekar R, Mahajani S, Bhambure R. Mechanistic Modeling of Size Exclusion Chromatography-Assisted In Vitro Refolding of the Recombinant Biosimilar Teriparatide (PTH-34). ACS OMEGA 2024; 9:3204-3216. [PMID: 38284095 PMCID: PMC10809233 DOI: 10.1021/acsomega.3c04463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
In vitro protein refolding is one of the critical unit operations in manufacturing recombinant peptides expressed using Escherichia coli as host cells. This study is focused on designing size exclusion chromatography-assisted in vitro refolding process for biosimilar recombinant parathyroid hormone. Inclusion bodies (IBs) of recombinant parathyroid hormone were solubilized at higher pH, and in vitro refolding was performed using size exclusion chromatography. In the first part of the investigation, DoE-based empirical optimization was performed to achieve a higher refolding yield for a biosimilar recombinant parathyroid hormone. The effect of solubilized inclusion body (IB) feed volume, concentration of IBs, and residence time on in vitro refolding of recombinant teriparatide was studied using the Box-Behnken design. Size exclusion chromatography (SEC)-assisted in vitro refolding was performed at 8 °C at pH 10.5 by using 20 mM Tris buffer. The maximum refolding yield of 98.12% was achieved at feed volume (12.5% of CV) and 20 mg/mL inclusion body (IB) concentration with a residence time of 50 min and a purity of 66.1% based on densitometric analysis using SDS-PAGE. In the latter part of the investigation, the general rate mechanistic model framework for size exclusion chromatography was developed and validated with the experimental results. The developed model helped in the accurate prediction of the elution volumes and product yield. The developed model also helps to predict the elution performance of a scalable column a priori. Post in vitro refolding, the formation of the native peptide structure was examined using various orthogonal analytical tools to study the protein's primary, secondary, and tertiary structures. The developed hybrid process development approach is a valuable tool toachieve high-yield, scalable refolding conditions for recombinant proteins without disulfide bonds.
Collapse
Affiliation(s)
- Santosh Ughade
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sunil Rana
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Nadeem
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Pune 411008, India
- Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rupali Kumthekar
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjay Mahajani
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Pune 411008, India
- Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rahul Bhambure
- Chemical Engineering and Process Development Division, CSIR - National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Liu C, Ye D, Yang H, Chen X, Su Z, Li X, Ding M, Liu Y. RAS-targeted cancer therapy: Advances in drugging specific mutations. MedComm (Beijing) 2023; 4:e285. [PMID: 37250144 PMCID: PMC10225044 DOI: 10.1002/mco2.285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Rat sarcoma (RAS), as a frequently mutated oncogene, has been studied as an attractive target for treating RAS-driven cancers for over four decades. However, it is until the recent success of kirsten-RAS (KRAS)G12C inhibitor that RAS gets rid of the title "undruggable". It is worth noting that the therapeutic effect of KRASG12C inhibitors on different RAS allelic mutations or even different cancers with KRASG12C varies significantly. Thus, deep understanding of the characteristics of each allelic RAS mutation will be a prerequisite for developing new RAS inhibitors. In this review, the structural and biochemical features of different RAS mutations are summarized and compared. Besides, the pathological characteristics and treatment responses of different cancers carrying RAS mutations are listed based on clinical reports. In addition, the development of RAS inhibitors, either direct or indirect, that target the downstream components in RAS pathway is summarized as well. Hopefully, this review will broaden our knowledge on RAS-targeting strategies and trigger more intensive studies on exploiting new RAS allele-specific inhibitors.
Collapse
Affiliation(s)
- Cen Liu
- Beijing University of Chinese MedicineBeijingChina
| | - Danyang Ye
- Beijing University of Chinese MedicineBeijingChina
| | - Hongliu Yang
- Beijing University of Chinese MedicineBeijingChina
| | - Xu Chen
- Beijing University of Chinese MedicineBeijingChina
| | - Zhijun Su
- Beijing University of Chinese MedicineBeijingChina
| | - Xia Li
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Mei Ding
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yonggang Liu
- Beijing University of Chinese MedicineBeijingChina
| |
Collapse
|
8
|
Dergunova LV, Filippenkov IB, Limborska SA, Myasoedov NF. Neuroprotective Peptides and New Strategies for Ischemic Stroke Drug Discoveries. Genes (Basel) 2023; 14:genes14050953. [PMID: 37239313 DOI: 10.3390/genes14050953] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Ischemic stroke continues to be one of the leading causes of death and disability in the adult population worldwide. The currently used pharmacological methods for the treatment of ischemic stroke are not effective enough and require the search for new tools and approaches to identify therapeutic targets and potential neuroprotectors. Today, in the development of neuroprotective drugs for the treatment of stroke, special attention is paid to peptides. Namely, peptide action is aimed at blocking the cascade of pathological processes caused by a decrease in blood flow to the brain tissues. Different groups of peptides have therapeutic potential in ischemia. Among them are small interfering peptides that block protein-protein interactions, cationic arginine-rich peptides with a combination of various neuroprotective properties, shuttle peptides that ensure the permeability of neuroprotectors through the blood-brain barrier, and synthetic peptides that mimic natural regulatory peptides and hormones. In this review, we consider the latest achievements and trends in the development of new biologically active peptides, as well as the role of transcriptomic analysis in identifying the molecular mechanisms of action of potential drugs aimed at the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lyudmila V Dergunova
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Ivan B Filippenkov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Svetlana A Limborska
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Nikolay F Myasoedov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
9
|
Putilina MV. [The use of neuropeptides of animal origin in the treatment of neurological diseases]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:37-42. [PMID: 37796066 DOI: 10.17116/jnevro202312309137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The issues of effective treatment of neurological diseases remain relevant to this day. Neuropeptide preparations have been used in domestic neurological practice for more than 20 years. The physiological activity of neuropeptides is many times greater than that of non-peptide compounds. Neuropeptides include preparations from the brain of animals and synthetically synthesized analogues. The drugs differ from each other not only in composition, but also in different mechanisms of action, while maintaining the commonality of a pronounced neurotrophic and neuroreparative action. Large peptides and amino acids work on the principle of «replacement therapy», minipeptides affect the signaling system of the nuclear erythroid factor and bind to molecular targets, being bioregulators. The specific action of bioregulators is the ability to prolong their action and change the prevailing mechanism by reducing or increasing the required dose when physiologically necessary. They are called SMART-peptides, have high selectivity and efficiency, safety can potentiate the actions of other drugs.
Collapse
Affiliation(s)
- M V Putilina
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
10
|
Nehme R, Diab-Assaf M, Decombat C, Delort L, Caldefie-Chezet F. Targeting Adiponectin in Breast Cancer. Biomedicines 2022; 10:2958. [PMID: 36428526 PMCID: PMC9687473 DOI: 10.3390/biomedicines10112958] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Obesity and breast cancer are two major health issues that could be categorized as sincere threats to human health. In the last few decades, the relationship between obesity and cancer has been well established and extensively investigated. There is strong evidence that overweight and obesity increase the risk of postmenopausal breast cancer, and adipokines are the central players in this relationship. Produced and secreted predominantly by white adipose tissue, adiponectin is a bioactive molecule that exhibits numerous protective effects and is considered the guardian angel of adipokine. In the obesity-cancer relationship, more and more evidence shows that adiponectin may prevent and protect individuals from developing breast cancer. Recently, several updates have been published on the implication of adiponectin in regulating tumor development, progression, and metastases. In this review, we provide an updated overview of the metabolic signaling linking adiponectin and breast cancer in all its stages. On the other hand, we critically summarize all the available promising candidates that may reactivate these pathways mainly by targeting adiponectin receptors. These molecules could be synthetic small molecules or plant-based proteins. Interestingly, the advances in genomics have made it possible to create peptide sequences that could specifically replace human adiponectin, activate its receptor, and mimic its function. Thus, the obvious anti-cancer activity of adiponectin on breast cancer should be better exploited, and adiponectin must be regarded as a serious biomarker that should be targeted in order to confront this threatening disease.
Collapse
Affiliation(s)
- Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Moléculaire et Pharmacologie Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Lebanon
| | - Caroline Decombat
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|