1
|
Ghosh Laskar S, Kumar A, Salunkhe R, Agarwal JP, Upasani M, Sinha S, Mohanty S, Chowdhury OR, Johnny C, Budrukkar A, Swain M, Chaukar D, Pai P, Chaturvedi P, Pantvaidya G, Nair S, Nair D, Deshmukh A, Thiagarajan S, Vaish R, Tuljapurkar V, Joshi P, Shetty R, Singh A, Prabhash K, Noronha V, Joshi A, Menon N, Khan F. Patient Selection and Outcomes in Reirradiation for Head and Neck Cancers: A Prospective Cohort Study. Clin Oncol (R Coll Radiol) 2025; 40:103772. [PMID: 39955966 DOI: 10.1016/j.clon.2025.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/29/2024] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
AIMS Reirradiation (re-RT) in head and neck cancers requires careful patient selection. This study aimed to identify factors influencing re-RT decisions, analyse survival outcomes, and evaluate toxicities. MATERIALS AND METHODS From 2013 to 2017, 250 patients previously treated with radical RT for head and neck cancers were prospectively included. Exclusions were prior RT dose <50 Gy, distant metastasis or prior RT within six months. The median disease-free interval (DFI) was 45.5 months, with a median follow-up of 52 months. Factors affecting survival were analysed, comparing outcomes between re-RT recipients and non-recipients in a propensity score-matched cohort. RESULTS Among 250 patients, 177 (70.8%) were advised re-RT. Long DFI (67%) was the most common reason for re-RT, while significant late sequelae (49%) often led to denial. Advanced recurrence stage (HR 1.549, p = 0.04), non-surgical intervention (HR 3.455, p < 0.005), non-recipients of re-RT (HR 4.459, p < 0.005) and organ dysfunction (HR 2.187, p < 0.005) predicted worse survival. For 162 re-RT recipients vs. non-recipients, the 3-year locoregional control, event-free survival and OS were 56.1% vs. 39.9% (p = 0.002), 42.1% vs. 26.7% (p = 0.002), and 57.1% vs. 31.3% (p < 0.001), respectively. After propensity matching, the re-RT group showed better 3-year OS (48.8% vs. 31.3%, p = 0.04) despite increased toxicities. CONCLUSION Effective patient selection is vital for successful re-RT. Surgery followed by adjuvant RT yields optimal outcomes. Despite technical advancements, managing toxicities remains challenging. These findings provide valuable insights for clinicians facing the complex decision of re-RT in head and neck cancer patients.
Collapse
Affiliation(s)
- S Ghosh Laskar
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India.
| | - A Kumar
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - R Salunkhe
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - J P Agarwal
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - M Upasani
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - S Sinha
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - S Mohanty
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - O R Chowdhury
- Department of Biostatistics, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - C Johnny
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - A Budrukkar
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - M Swain
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - D Chaukar
- Department of Head and Neck Surgery, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - P Pai
- Department of Head and Neck Surgery, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - P Chaturvedi
- Department of Head and Neck Surgery, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - G Pantvaidya
- Department of Head and Neck Surgery, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - S Nair
- Department of Head and Neck Surgery, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - D Nair
- Department of Head and Neck Surgery, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - A Deshmukh
- Department of Head and Neck Surgery, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - S Thiagarajan
- Department of Head and Neck Surgery, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - R Vaish
- Department of Head and Neck Surgery, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - V Tuljapurkar
- Department of Head and Neck Surgery, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - P Joshi
- Department of Head and Neck Surgery, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - R Shetty
- Department of Head and Neck Surgery, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - A Singh
- Department of Head and Neck Surgery, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - K Prabhash
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - V Noronha
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - A Joshi
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - N Menon
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - F Khan
- Department of Radiation Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
2
|
Saini KS, Somara S, Ko HC, Thatai P, Quintana A, Wallen ZD, Green MF, Mehrotra R, McGuigan S, Pang L, Das S, Yadav K, Neric D, Cantini L, Joshi C, Iwamoto K, Dubbewar S, Vidal L, Chico I, Severson E, Lorini L, Badve S, Bossi P. Biomarkers in head and neck squamous cell carcinoma: unraveling the path to precision immunotherapy. Front Oncol 2024; 14:1473706. [PMID: 39439946 PMCID: PMC11493772 DOI: 10.3389/fonc.2024.1473706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Recent strides in understanding the molecular underpinnings of head and neck cancers have sparked considerable interest in identifying precise biomarkers that can enhance prognostication and enable personalized treatment strategies. Immunotherapy has particularly revolutionized the therapeutic landscape for head and neck squamous cell carcinoma, offering new avenues for treatment. This review comprehensively examines the application and limitations of the established and emerging/novel biomarkers for head and neck squamous cell carcinoma. Established biomarkers, including well-characterized genetic mutations, protein expressions, and clinical factors, have been extensively studied and validated in clinical practice. Novel biomarkers identified through molecular analyses, including novel genetic alterations, immune-related markers, and molecular signatures, are currently being investigated and validated in preclinical and clinical settings. Biomarkers hold the potential to deepen our understanding of head and neck squamous cell carcinoma biology and guide therapeutic strategies. The evolving paradigm of predictive biomarkers facilitates the study of individual responses to specific treatments, including targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Kamal S. Saini
- Fortrea Inc., Durham, NC, United States
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | - Soma Das
- Fortrea Inc., Durham, NC, United States
| | - Kavita Yadav
- George Institute for Global Health, New Delhi, India
| | | | | | | | | | | | | | | | | | - Luigi Lorini
- Medical Oncology and Hematology Unit, IRCCS Humanitas Cancer Centre, Milan, Italy
| | - Sunil Badve
- Emory University, Atlanta, GA, United States
| | - Paolo Bossi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Cancer Centre, Milan, Italy
- Università degli Studi di Brescia, Brescia, Italy
| |
Collapse
|
3
|
Meidenbauer J, Wachter M, Schulz SR, Mostafa N, Zülch L, Frey B, Fietkau R, Gaipl US, Jost T. Inhibition of ATM or ATR in combination with hypo-fractionated radiotherapy leads to a different immunophenotype on transcript and protein level in HNSCC. Front Oncol 2024; 14:1460150. [PMID: 39411143 PMCID: PMC11473424 DOI: 10.3389/fonc.2024.1460150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Background The treatment of head and neck tumors remains a challenge due to their reduced radiosensitivity. Small molecule kinase inhibitors (smKI) that inhibit the DNA damage response, may increase the radiosensitivity of tumor cells. However, little is known about how the immunophenotype of the tumor cells is modulated thereby. Therefore, we investigated whether the combination of ATM or ATR inhibitors with hypo-fractionated radiotherapy (RT) has a different impact on the expression of immune checkpoint markers (extrinsic), the release of cytokines or the transcriptome (intrinsic) of head and neck squamous cell carcinoma (HNSCC) cells. Methods The toxic and immunogenic effects of the smKI AZD0156 (ATMi) and VE-822 (ATRi) in combination with a hypo-fractionated scheme of 2x5Gy RT on HPV-negative (HSC4, Cal-33) and HPV-positive (UM-SCC-47, UD-SCC-2) HNSCC cell lines were analyzed as follows: cell death (necrosis, apoptosis; detected by AnxV/PI), expression of immunostimulatory (ICOS-L, OX40-L, TNFSFR9, CD70) and immunosuppressive (PD-L1, PD-L2, HVEM) checkpoint marker using flow cytometry; the release of cytokines using multiplex ELISA and the gene expression of Cal-33 on mRNA level 48 h post-RT. Results Cell death was mainly induced by the combination of RT with both inhibitors, but stronger with ATRi. Further, the immune phenotype of cancer cells, not dying from combination therapy itself, is altered predominantly by RT+ATRi in an immune-stimulatory manner by the up-regulation of ICOS-L. However, the analysis of secreted cytokines after treatment of HNSCC cell lines revealed an ambivalent influence of both inhibitors, as we observed the intensified secretion of IL-6 and IL-8 after RT+ATRi. These findings were confirmed by RNAseq analysis and further the stronger immune-suppressive character of RT+ATMi was enlightened. We detected the down-regulation of a central protein of cytoplasmatic sensing pathways of nucleic acids, RIG-1, and found one immune-suppressive target, EDIL3, strongly up-regulated by RT+ATMi. Conclusion Independent of a restrictive toxicity, the combination of RT + either ATMi or ATRi leads to comprehensive and immune-modulating alterations in HNSCC. This includes pro-inflammatory signaling induced by RT + ATRi but also anti-inflammatory signals. These findings were confirmed by RNAseq analysis, which further highlighted the immune-suppressive nature of RT + ATMi.
Collapse
Affiliation(s)
- Julia Meidenbauer
- Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Wachter
- Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian R. Schulz
- Division of Molecular Immunology, Internal Medicine III, University Hospital Erlangen, Nikolaus-Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Nada Mostafa
- Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lilli Zülch
- Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Uniklinikum Erlangen, Erlangen, Germany
- FAU Profile Center Immunomedicine Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Uniklinikum Erlangen, Erlangen, Germany
- FAU Profile Center Immunomedicine Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Udo S. Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Uniklinikum Erlangen, Erlangen, Germany
- FAU Profile Center Immunomedicine Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tina Jost
- Translational Radiobiology, Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Shirima CA, Bleotu C, Spandidos DA, El-Naggar AK, Pircalabioru GG, Michalopoulos I. Epithelial‑derived head and neck squamous tumourigenesis (Review). Oncol Rep 2024; 52:141. [PMID: 39219259 PMCID: PMC11358675 DOI: 10.3892/or.2024.8800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs), a heterogeneous group of cancers that arise from the mucosal epithelia cells in the head and neck areas, present great challenges in diagnosis, treatment and prognosis due to their complex aetiology and various clinical manifestations. Several factors, including smoking, alcohol consumption, oncogenic genes, growth factors, Epstein‑Barr virus and human papillomavirus infections can contribute to HNSCC development. The unpredictable tumour microenvironment adds to the complexity of managing HNSCC. Despite significant advances in therapies, the prediction of outcome after treatment for patients with HNSCC remains poor, and the 5‑year overall survival rate is low due to late diagnosis. Early detection greatly increases the chances of successful treatment. The present review aimed to bring together the latest findings related to the molecular mechanisms of HNSCC carcinogenesis and progression. Comprehensive genomic, transcriptomic, metabolomic, microbiome and proteomic analyses allow researchers to identify important biological markers such as genetic alterations, gene expression signatures and protein markers that drive HNSCC tumours. These biomarkers associated with the stages of initiation, progression and metastasis of cancer are useful in the management of patients with cancer in order to improve their life expectancy and quality of life.
Collapse
Affiliation(s)
- Charles Adolfu Shirima
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania
| | - Coralia Bleotu
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Adel K. El-Naggar
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | | | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Raja K. Comments on "Oncolytic virotherapy for oral squamous cell carcinoma using replication-competent viruses". Oral Oncol 2024; 155:106897. [PMID: 38901367 DOI: 10.1016/j.oraloncology.2024.106897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Affiliation(s)
- Kannan Raja
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai 602105, India.
| |
Collapse
|
6
|
Gül D, Önal Acet B, Lu Q, Stauber RH, Odabaşı M, Acet Ö. Revolution in Cancer Treatment: How Are Intelligently Designed Nanostructures Changing the Game? Int J Mol Sci 2024; 25:5171. [PMID: 38791209 PMCID: PMC11120744 DOI: 10.3390/ijms25105171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Nanoparticles (NPs) are extremely important tools to overcome the limitations imposed by therapeutic agents and effectively overcome biological barriers. Smart designed/tuned nanostructures can be extremely effective for cancer treatment. The selection and design of nanostructures and the adjustment of size and surface properties are extremely important, especially for some precision treatments and drug delivery (DD). By designing specific methods, an important era can be opened in the biomedical field for personalized and precise treatment. Here, we focus on advances in the selection and design of nanostructures, as well as on how the structure and shape, size, charge, and surface properties of nanostructures in biological fluids (BFs) can be affected. We discussed the applications of specialized nanostructures in the therapy of head and neck cancer (HNC), which is a difficult and aggressive type of cancer to treat, to give an impetus for novel treatment approaches in this field. We also comprehensively touched on the shortcomings, current trends, and future perspectives when using nanostructures in the treatment of cancer.
Collapse
Affiliation(s)
- Désirée Gül
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (B.Ö.A.); (Q.L.); (R.H.S.)
| | - Burcu Önal Acet
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (B.Ö.A.); (Q.L.); (R.H.S.)
- Chemistry Department, Faculty of Arts and Science, Aksaray University, Aksaray 68100, Turkey;
| | - Qiang Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (B.Ö.A.); (Q.L.); (R.H.S.)
| | - Roland H. Stauber
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (B.Ö.A.); (Q.L.); (R.H.S.)
| | - Mehmet Odabaşı
- Chemistry Department, Faculty of Arts and Science, Aksaray University, Aksaray 68100, Turkey;
| | - Ömür Acet
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (B.Ö.A.); (Q.L.); (R.H.S.)
- Pharmacy Services Program, Vocational School of Health Science, Tarsus University, Tarsus 33100, Turkey
| |
Collapse
|
7
|
Kranjčević JK, Čonkaš J, Ozretić P. The Role of Estrogen and Estrogen Receptors in Head and Neck Tumors. Cancers (Basel) 2024; 16:1575. [PMID: 38672656 PMCID: PMC11049451 DOI: 10.3390/cancers16081575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/21/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common histological form of head and neck tumors (HNTs), which originate from the epithelium of the lips and oral cavity, pharynx, larynx, salivary glands, nasal cavity, and sinuses. The main risk factors include consumption of tobacco in all forms and alcohol, as well as infections with high-risk human papillomaviruses or the Epstein-Barr virus. Regardless of the etiological agent, the risk of developing different types of HNTs is from two to more than six times higher in males than in females. The reason for such disparities probably lies in a combination of both biological and psychosocial factors. Therefore, it is hypothesized that exposure to female sex hormones, primarily estrogen, provides women with protection against the formation and metastasis of HNTs. In this review, we synthesized available knowledge on the role of estrogen and estrogen receptors (ERs) in the development and progression of HNTs, with special emphasis on membrane ERs, which are much less studied. We can summarize that in addition to epidemiologic studies unequivocally pointing to the protective effect of estrogen in women, an increased expression of both nuclear ERs, ERα, and ERβ, and membrane ERs, ERα36, GPER1, and NaV1.2, was present in different types of HNSCC, for which anti-estrogens could be used as an effective therapeutic approach.
Collapse
Affiliation(s)
| | | | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia (J.Č.)
| |
Collapse
|
8
|
Ritter A, Levyn H, Shah J. Recent advances in head and neck surgical oncology. J Surg Oncol 2024; 129:32-39. [PMID: 37990842 PMCID: PMC10842243 DOI: 10.1002/jso.27529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
In recent years, the field of head and neck oncology has witnessed a remarkable transformation with unprecedented advances that have revolutionized the management of complex tumors in this region. As an intricate subspecialty within oncology, head and neck surgical procedures demand detailed knowledge of the complex anatomy meticulous precision in surgical technique, and expertise to preserve vital functions while ensuring optimal oncological outcomes. With the relentless pursuit of improved patient outcomes, the integration of innovative technologies has significantly enhanced the surgical armamentarium. Robotics, endoscopic platforms, and image-guided navigation have revolutionized the surgical approach, enabling precise tumor resection and sparing healthy tissues. Furthermore, the application of advanced imaging modalities and molecular biomarker profiling has opened new avenues for personalized treatment strategies. From targeted therapies and immunotherapies to adaptive radiation techniques, clinicians are now equipped with an array of tailored options, ushering in a new era of personalized care for patients with head and neck malignancies. This article delves into the unfolding narratives of clinical triumphs, exploring the transformative potential of emerging therapies and the collaborative efforts propelling head and neck surgical oncology toward a future of hope and healing.
Collapse
|
9
|
Kubina R, Krzykawski K, Sokal A, Madej M, Dziedzic A, Kadela-Tomanek M. New Propargyloxy Derivatives of Galangin, Kaempferol and Fisetin-Synthesis, Spectroscopic Analysis and In Vitro Anticancer Activity on Head and Neck Cancer Cells. Cells 2023; 12:2288. [PMID: 37759511 PMCID: PMC10528839 DOI: 10.3390/cells12182288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Head and neck cancer (HNC) therapy is limited; therefore, new solutions are increasingly being sought among flavonoids, which exhibit numerous biological properties, including potential anticancer activity. However, because they are mostly insoluble in water, are unstable and have low bioavailability, they are subjected to chemical modification to obtain new derivatives with better properties. This study aimed to synthesize and analyze new propargyloxy derivatives of galangin, kaempferol and fisetin, and to evaluate their anticancer activity against selected HNC cell lines. The obtained derivatives were assessed by spectroscopic analysis; next, their anticancer activity was evaluated using a flow cytometer and real-time cell analysis. The results showed that only the fisetin derivative was suitable for further analysis, due to the lack of crystal formation of the compound. The fisetin derivative statistically significantly increases the number of cells in the G2/M phase (p < 0.05) and increases cyclin B1 levels. A statistically significant increase in the number of apoptotic cells after being exposed to the tested compound was also observed (p < 0.05). The data indicate that the obtained fisetin derivative exhibits anticancer activity by affecting the cell cycle and increasing apoptosis in selected HNC lines, which suggests its potential use as a new medicinal agent in the future.
Collapse
Affiliation(s)
- Robert Kubina
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland; (K.K.); (M.M.)
| | - Kamil Krzykawski
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland; (K.K.); (M.M.)
| | - Arkadiusz Sokal
- Students Scientific Group of Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
| | - Marcel Madej
- Silesia LabMed, Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland; (K.K.); (M.M.)
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Monika Kadela-Tomanek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland;
| |
Collapse
|
10
|
Vale N, Pereira M, Mendes RA. Systemic Inflammatory Disorders, Immunosuppressive Treatment and Increase Risk of Head and Neck Cancers-A Narrative Review of Potential Physiopathological and Biological Mechanisms. Cells 2023; 12:2192. [PMID: 37681925 PMCID: PMC10487135 DOI: 10.3390/cells12172192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
Head and neck cancers (HNCs) are known to present multiple factors likely to influence their development. This review aims to provide a comprehensive overview of the current scientific literature on the interplay between systemic inflammatory disorders, immunosuppressive treatments and their synergistic effect on HNC risk. Both cell-mediated and humoral-mediated systemic inflammatory disorders involve dysregulated immune responses and chronic inflammation and these inflammatory conditions have been associated with an increased risk of HNC development, primarily in the head and neck region. Likewise, the interaction between systemic inflammatory disorders and immunosuppressive treatments appears to amplify the risk of HNC development, as chronic inflammation fosters a tumor-promoting microenvironment, while immunosuppressive therapies further compromise immune surveillance and anti-tumor immune responses. Understanding the molecular and cellular mechanisms underlying this interaction is crucial for developing targeted prevention strategies and therapeutic interventions. Additionally, the emerging field of immunotherapy provides potential avenues for managing HNCs associated with systemic inflammatory disorders, but further research is needed to determine its efficacy and safety in this specific context. Future studies are warranted to elucidate the underlying mechanisms and optimize preventive strategies and therapeutic interventions.
Collapse
Affiliation(s)
- Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Mariana Pereira
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rui Amaral Mendes
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Department of Oral and Maxillofacial Medicine and Diagnostic Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-7401, USA
| |
Collapse
|
11
|
Vallianou NG, Evangelopoulos A, Kounatidis D, Panagopoulos F, Geladari E, Karampela I, Stratigou T, Dalamaga M. Immunotherapy in Head and Neck Cancer: Where Do We Stand? Curr Oncol Rep 2023; 25:897-912. [PMID: 37213060 DOI: 10.1007/s11912-023-01425-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/23/2023]
Abstract
PURPOSEOF REVIEW Head and neck cancer (HNC) comprises a group of malignancies, amongst which squamous cell carcinoma accounts for more than 90% of the cases. HNC has been related to tobacco use, alcohol consumption, human papillomavirus, Epstein-Barr virus, air pollution, and previous local radiotherapy. HNC has been associated with substantial morbidity and mortality. This review aims to summarize the recent findings regarding immunotherapy in HNC. RECENT FINDINGS The recent introduction of immunotherapy, with the use of programmed death 1 (PD-1) inhibitors pembrolizumab and nivolumab, which have been FDA approved for the treatment of metastatic or recurrent head and neck squamous cell carcinoma, has changed the field in metastatic or recurrent disease. There are many ongoing trials regarding the use of novel immunotherapeutic agents, such as durvalumab, atezolizumab, avelumab, tremelimumab, and monalizumab. In this review, we focus on the therapeutic potential of novel immunotherapy treatment modalities, such as combinations of newer immune-checkpoint inhibitors; the use of tumor vaccines such as human papillomavirus-targeted vaccines; the potential use of oncolytic viruses; as well as the latest advances regarding adoptive cellular immunotherapy. As novel treatment options are still emerging, a more personalized approach to metastatic or recurrent HNC therapy should be followed. Moreover, the role of the microbiome in immunotherapy, the limitations of immunotherapy, and the various diagnostic, prognostic, and predictive biomarkers based on genetics and the tumor microenvironment are synopsized.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str, 10676, Athens, Greece.
| | - Angelos Evangelopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str, 10676, Athens, Greece
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str, 10676, Athens, Greece
| | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str, 10676, Athens, Greece
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str, 10676, Athens, Greece
| | - Irene Karampela
- 2Nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Street, 12462, Athens, Chaidari, Greece
| | - Theodora Stratigou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Str, 10676, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527, Athens, Greece
| |
Collapse
|
12
|
Mahdavi H. Induction chemotherapy in locally advanced head and neck cancers, is there a best choice? Crit Rev Oncol Hematol 2023; 186:103986. [PMID: 37059273 DOI: 10.1016/j.critrevonc.2023.103986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023] Open
Abstract
Locally advanced stages of squamous cancers of the head and neck (LAHNCs) acquire high propensity for local and systemic relapse. Addition of systemic therapy as an induction (IC) to the standard concurrent chemoradiotherapy (CCRT) has become an approach of many practitioners. This strategy has shown to reduce metastases but did not affect survival in unselected populations. Meanwhile, the induction regimen including docetaxel, cisplatin, 5-FU (TPF) has shown superiority over other combinations, however, a survival advantage was not detected when compared to CCRT alone. This may be attributed to its high toxicity profile, inducing treatment delay, resistance, or variations in tumor sites and responses. Currently, newer systemic therapy combinations are being tested and indicators of benefit are being identified. The focus of this review is on the development of the choice of combination regimen for induction, next, proposed alternatives and strategies for patient selection will be introduced.
Collapse
Affiliation(s)
- Hoda Mahdavi
- Department of Radiation Oncology, School of Medicine, Iran University of Medical Sciences,Tehran, Iran; Firoozgar General Hospital, Beh-Afarin St., Karimkhan-e-Zand Blvd., Tehran, Iran.
| |
Collapse
|
13
|
Starska-Kowarska K. The Role of Different Immunocompetent Cell Populations in the Pathogenesis of Head and Neck Cancer-Regulatory Mechanisms of Pro- and Anti-Cancer Activity and Their Impact on Immunotherapy. Cancers (Basel) 2023; 15:1642. [PMID: 36980527 PMCID: PMC10046400 DOI: 10.3390/cancers15061642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive and heterogeneous groups of human neoplasms. HNSCC is characterized by high morbidity, accounting for 3% of all cancers, and high mortality with ~1.5% of all cancer deaths. It was the most common cancer worldwide in 2020, according to the latest GLOBOCAN data, representing the seventh most prevalent human malignancy. Despite great advances in surgical techniques and the application of modern combinations and cytotoxic therapies, HNSCC remains a leading cause of death worldwide with a low overall survival rate not exceeding 40-60% of the patient population. The most common causes of death in patients are its frequent nodal metastases and local neoplastic recurrences, as well as the relatively low response to treatment and severe drug resistance. Much evidence suggests that the tumour microenvironment (TME), tumour infiltrating lymphocytes (TILs) and circulating various subpopulations of immunocompetent cells, such regulatory T cells (CD4+CD25+Foxp3+Tregs), cytotoxic CD3+CD8+ T cells (CTLs) and CD3+CD4+ T helper type 1/2/9/17 (Th1/Th2/Th9/Th17) lymphocytes, T follicular helper cells (Tfh) and CD56dim/CD16bright activated natural killer cells (NK), carcinoma-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (N1/N2 TANs), as well as tumour-associated macrophages (M1/M2 phenotype TAMs) can affect initiation, progression and spread of HNSCC and determine the response to immunotherapy. Rapid advances in the field of immuno-oncology and the constantly growing knowledge of the immunosuppressive mechanisms and effects of tumour cancer have allowed for the use of effective and personalized immunotherapy as a first-line therapeutic procedure or an essential component of a combination therapy for primary, relapsed and metastatic HNSCC. This review presents the latest reports and molecular studies regarding the anti-tumour role of selected subpopulations of immunocompetent cells in the pathogenesis of HNSCC, including HPV+ve (HPV+) and HPV-ve (HPV-) tumours. The article focuses on the crucial regulatory mechanisms of pro- and anti-tumour activity, key genetic or epigenetic changes that favour tumour immune escape, and the strategies that the tumour employs to avoid recognition by immunocompetent cells, as well as resistance mechanisms to T and NK cell-based immunotherapy in HNSCC. The present review also provides an overview of the pre- and clinical early trials (I/II phase) and phase-III clinical trials published in this arena, which highlight the unprecedented effectiveness and limitations of immunotherapy in HNSCC, and the emerging issues facing the field of HNSCC immuno-oncology.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-604-541-412
- Department of Otorhinolaryngology, EnelMed Center Expert, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|