1
|
Lawson McLean A, Nemir J. Quantifying insertional effects in deep brain stimulation: clinical outcomes and neurophysiological mechanisms. Expert Rev Med Devices 2025; 22:285-291. [PMID: 40098272 DOI: 10.1080/17434440.2025.2480660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
INTRODUCTION Deep brain stimulation (DBS) has revolutionized the treatment of various neurological and psychiatric disorders. However, recent findings highlight the significant clinical and molecular responses elicited by the mere insertion of DBS electrodes, termed 'insertional effects.' This review explores the clinical manifestations and underlying mechanisms of these effects, emphasizing their implications for neuromodulation therapies. AREAS COVERED A comprehensive literature search was conducted, examining studies that document the clinical benefits observed immediately following DBS electrode implantation in conditions such as Parkinson's disease, epilepsy, chronic pain, and psychiatric disorders. The review delves into the molecular and cellular mechanisms, including neuroinflammatory responses and ion channel dynamics, that contribute to these insertional effects. Additionally, the potential for these effects to predict DBS efficacy and inform the development of closed-loop DBS systems is discussed. EXPERT OPINION The insertional effects of DBS represent a crucial yet underappreciated phenomenon with significant implications for optimizing therapeutic protocols and enhancing patient outcomes. Recognizing and harnessing these effects could lead to more personalized and effective neuromodulation strategies, advancing the field of DBS and improving treatment for a range of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Aaron Lawson McLean
- Department of Neurosurgery, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Jakob Nemir
- Department of Neurosurgery, University Hospital Center Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Karimi F, Cassarà AM, Capstick M, Kuster N, Neufeld E. Safety of non-invasive brain stimulation in patients with implants: a computational risk assessment. J Neural Eng 2025; 22:016039. [PMID: 39500046 DOI: 10.1088/1741-2552/ad8efa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/05/2024] [Indexed: 02/14/2025]
Abstract
Objective.Non-invasive brain stimulation (NIBS) methodologies, such as transcranial electric stimulation (tES) are increasingly employed for therapeutic, diagnostic, or research purposes. The concurrent presence of active/passive implants can pose safety risks, affect the NIBS delivery, or generate confounding signals. A systematic investigation is required to understand the interaction mechanisms, quantify exposure, assess risks, and establish guidance for NIBS applications.Approach.We used measurements, simplified generic, and detailed anatomical modeling to: (i) systematically analyze exposure conditions with passive and active implants, considering local field enhancement, exposure dosimetry, tissue heating and neuromodulation, capacitive lead current injection, low-impedance pathways between electrode contacts, and insulation damage; (ii) identify risk metrics and efficient prediction strategies; (iii) quantify these metrics in relevant exposure cases and (iv) identify worst case conditions. Various aspects including implant design, positioning, scar tissue formation, anisotropy, and frequency were investigated.Main results.At typical tES frequencies, local enhancement of dosimetric exposure quantities can reach up to one order of magnitude for deep brain stimulation (DBS) and stereoelectroencephalography implants (more for elongated passive implants), potentially resulting in unwanted neuromodulation that can confound results but is still 2-3 orders of magnitude lower than active DBS. Under worst-case conditions, capacitive current injection in the active implants' lead can produce local exposures of similar magnitude as the passive field enhancement, while capacitive pathways between contacts are negligible. Above 10 kHz, applied current magnitudes increase, necessitating consideration of tissue heating. Furthermore, capacitive effects become more prominent, leading to current injection that can reach DBS-like levels. Adverse effects from abandoned/damaged leads in direct electrode vicinity cannot be excluded.Significance.Safety related concerns of tES application in the presence of implants are systematically identified and explored, resulting in specific and quantitative guidance and establishing basis for safety standards. Furthermore, several methods for reducing risks are suggested while acknowledging the limitations (see section4.5).
Collapse
Affiliation(s)
- Fariba Karimi
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Antonino M Cassarà
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Myles Capstick
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Niels Kuster
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| |
Collapse
|
3
|
Aasen SR, Drevland RN, Csifcsák G, Mittner M. Increasing mind wandering with accelerated intermittent theta burst stimulation over the left dorsolateral prefrontal cortex. Neuropsychologia 2024; 204:109008. [PMID: 39368546 DOI: 10.1016/j.neuropsychologia.2024.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/05/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Mind wandering (MW) is the intentional or unintentional experience of attending to internal task-unrelated thoughts while being occupied with an external task. Even though maintaining task focus is assumed to require executive functions (EF), it is not clear how and to what extent MW and EF interact. Research has found that activity in the dorsolateral prefrontal cortex (DLPFC) is associated with EF and MW. To understand the causal role of the DLPFC in relation to MW and EF, researchers have turned to non-invasive brain stimulation. Thus far, most studies have used transcranial direct current stimulation, but the results have been inconclusive. To further elucidate the relationship between the DLPFC, EF and MW, we conducted a pre-registered, sham-controlled, triple-blinded within-subject experiment by combining intermittent theta burst stimulation (iTBS) interleaved with a recently developed MW-EF task. In contrast to our expectations, participants reported significantly more MW following real iTBS as compared to sham stimulation. However, at the same time, psychomotor precision and EF improved, indicating that participants were able to engage in resource-intensive MW while simultaneously performing well on the task. We argue that iTBS enhanced the underlying executive resources that could be used to increase both MW and task performance in line with the resource-control view of MW. This finding opens exciting avenues for studying the complex interplay between MW and EF and provides empirical support for the utility of iTBS in improving executive performance during a demanding cognitive task.
Collapse
Affiliation(s)
| | | | - Gábor Csifcsák
- Department of Psychology, UiT the Arctic University of Norway, Norway
| | - Matthias Mittner
- Department of Psychology, UiT the Arctic University of Norway, Norway.
| |
Collapse
|
4
|
Fehring DJ, Yokoo S, Abe H, Buckley MJ, Miyamoto K, Jaberzadeh S, Yamamori T, Tanaka K, Rosa MGP, Mansouri FA. Direct current stimulation modulates prefrontal cell activity and behaviour without inducing seizure-like firing. Brain 2024; 147:3751-3763. [PMID: 39166526 PMCID: PMC11531852 DOI: 10.1093/brain/awae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has garnered significant interest for its potential to enhance cognitive functions and as a therapeutic intervention in various cognitive disorders. However, the clinical application of tDCS has been hampered by significant variability in its cognitive outcomes. Furthermore, the widespread use of tDCS has raised concerns regarding its safety and efficacy, particularly in light of our limited understanding of its underlying neural mechanisms at the cellular level. We still do not know 'where', 'when' and 'how' tDCS modulates information encoding by neurons, in order to lead to the observed changes in cognitive functions. Without elucidating these fundamental unknowns, the root causes of its outcome variability and long-term safety remain elusive, challenging the effective application of tDCS in clinical settings. Addressing this gap, our study investigates the effects of tDCS, applied over the dorsolateral prefrontal cortex, on cognitive abilities and individual neuron activity in macaque monkeys performing cognitive tasks. Like humans performing a delayed match-to-sample task, monkeys exhibited practice-related slowing in their responses (within-session behavioural adaptation). Concurrently, there were practice-related changes in simultaneously recorded activity of prefrontal neurons (within-session neuronal adaptation). Anodal tDCS attenuated both these behavioural and neuronal adaptations when compared with sham stimulation. Furthermore, tDCS abolished the correlation between response time of monkeys and neuronal firing rate. At a single-cell level, we also found that following tDCS, neuronal firing rate was more likely to exhibit task-specific modulation than after sham stimulation. These tDCS-induced changes in both behaviour and neuronal activity persisted even after the end of tDCS stimulation. Importantly, multiple applications of tDCS did not alter burst-like firing rates of individual neurons when compared with sham stimulation. This suggests that tDCS modulates neural activity without enhancing susceptibility to epileptiform activity, confirming a potential for safe use in clinical settings. Our research contributes unprecedented insights into the 'where', 'when' and 'how' of tDCS effects on neuronal activity and cognitive functions by showing that modulation of the behaviour of monkeys by the tDCS of the prefrontal cortex is accompanied by alterations in prefrontal cortical cell activity ('where') during distinct trial phases ('when'). Importantly, tDCS led to task-specific and state-dependent alterations in prefrontal cell activities ('how'). Our findings suggest a significant shift from the view that the effects of tDCS are merely attributable to polarity-specific shifts in cortical excitability and instead propose a more complex mechanism of action for tDCS that encompasses various aspects of cortical neuronal activity without increasing burst-like epileptiform susceptibility.
Collapse
Affiliation(s)
- Daniel J Fehring
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Seiichirou Yokoo
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Hiroshi Abe
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Mark J Buckley
- Department of Experimental Psychology, Oxford University, Oxford OX1 3UD, UK
| | - Kentaro Miyamoto
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Monash University, Clayton, VIC 3199, Australia
| | - Tetsuo Yamamori
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Keiji Tanaka
- RIKEN Center for Brain Science, RIKEN Institute, Wako-shi, 351-0198, Japan
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Farshad A Mansouri
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
5
|
Oliveri S, Bocci T, Maiorana NV, Guidetti M, Cimino A, Rosci C, Ghilardi G, Priori A. Cognitive trajectories after surgery: Guideline hints for assessment and treatment. Brain Cogn 2024; 176:106141. [PMID: 38458027 DOI: 10.1016/j.bandc.2024.106141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/10/2024]
Abstract
Elderly patients who undergo major surgery (not-neurosurgical) under general anaesthesia frequently complain about cognitive difficulties, especially during the first weeks after surgical "trauma". Although recovery usually occurs within a month, about one out of four patients develops full-blown postoperative Neurocognitive disorders (NCD) which compromise quality of life or daily autonomy. Mild/Major NCD affect approximately 10% of patients from three months to one year after major surgery. Neuroinflammation has emerged to have a critical role in the postoperative NCDs pathogenesis, through microglial activation and the release of pro-inflammatory cytokines which increase blood-brain-barrier permeability, enhance movement of leukocytes into the central nervous system (CNS) and favour the neuronal damage. Moreover, pre-existing Mild Cognitive Impairment, alcohol or drugs consumption, depression and other factors, together with several intraoperative and post-operative sequelae, can exacerbate the severity and duration of NCDs. In this context it is crucial rely on current progresses in serum and CSF biomarker analysis to frame neuroinflammation levels, along with establishing standard protocol for neuropsychological assessment (with specific set of tools) and to apply cognitive training or neuromodulation techniques to reduce the incidence of postoperative NCDs when required. It is recommended to identify those patients who would need such preventive intervention early, by including them in pre-operative and post-operative comprehensive evaluation and prevent the development of a full-blown dementia after surgery. This contribution reports all the recent progresses in the NCDs diagnostic classification, pathogenesis discoveries and possible treatments, with the aim to systematize current evidences and provide guidelines for multidisciplinary care.
Collapse
Affiliation(s)
- Serena Oliveri
- "Aldo Ravelli" Center for Neurotechnology and Brain Therapeutics Department of Health Sciences, University of Milan, Italy; Neurological Clinic, Azienda Socio Sanitaria Territoriale - Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Italy.
| | - Tommaso Bocci
- "Aldo Ravelli" Center for Neurotechnology and Brain Therapeutics Department of Health Sciences, University of Milan, Italy; Neurological Clinic, Azienda Socio Sanitaria Territoriale - Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Italy
| | - Natale Vincenzo Maiorana
- "Aldo Ravelli" Center for Neurotechnology and Brain Therapeutics Department of Health Sciences, University of Milan, Italy
| | - Matteo Guidetti
- "Aldo Ravelli" Center for Neurotechnology and Brain Therapeutics Department of Health Sciences, University of Milan, Italy
| | - Andrea Cimino
- Department of Health Science, School of Medicine and Surgery, University of Milano-Bicocca, Italy; Neurosurgery Unit, Neuroscience Department, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Chiara Rosci
- Neurological Clinic, Azienda Socio Sanitaria Territoriale - Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Italy
| | - Giorgio Ghilardi
- Department of Health Science, School of Medicine and Surgery, University of Milano-Bicocca, Italy; General Surgery Unit, Azienda Socio Sanitaria Territoriale - Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Italy
| | - Alberto Priori
- "Aldo Ravelli" Center for Neurotechnology and Brain Therapeutics Department of Health Sciences, University of Milan, Italy; Neurological Clinic, Azienda Socio Sanitaria Territoriale - Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Italy
| |
Collapse
|
6
|
Robins PL, Makaroff SN, Dib M, Lisanby SH, Deng ZD. Electric Field Characteristics of Rotating Permanent Magnet Stimulation. Bioengineering (Basel) 2024; 11:258. [PMID: 38534532 PMCID: PMC10968657 DOI: 10.3390/bioengineering11030258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
Neurostimulation devices that use rotating permanent magnets are being explored for their potential therapeutic benefits in patients with psychiatric and neurological disorders. This study aims to characterize the electric field (E-field) for ten configurations of rotating magnets using finite element analysis and phantom measurements. Various configurations were modeled, including single or multiple magnets, and bipolar or multipolar magnets, rotated at 10, 13.3, and 350 revolutions per second (rps). E-field strengths were also measured using a hollow sphere (r=9.2 cm) filled with a 0.9% sodium chloride solution and with a dipole probe. The E-field spatial distribution is determined by the magnets' dimensions, number of poles, direction of the magnetization, and axis of rotation, while the E-field strength is determined by the magnets' rotational frequency and magnetic field strength. The induced E-field strength on the surface of the head ranged between 0.0092 and 0.52 V/m. In the range of rotational frequencies applied, the induced E-field strengths were approximately an order or two of magnitude lower than those delivered by conventional transcranial magnetic stimulation. The impact of rotational frequency on E-field strength represents a confound in clinical trials that seek to tailor rotational frequency to individual neural oscillations. This factor could explain some of the variability observed in clinical trial outcomes.
Collapse
Affiliation(s)
- Pei L. Robins
- Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD 20892, USA; (P.L.R.); (S.H.L.)
| | - Sergey N. Makaroff
- Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Michael Dib
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
| | - Sarah H. Lisanby
- Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD 20892, USA; (P.L.R.); (S.H.L.)
| | - Zhi-De Deng
- Computational Neurostimulation Research Program, Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD 20892, USA; (P.L.R.); (S.H.L.)
| |
Collapse
|
7
|
Robins PL, Makaroff SN, Dib M, Lisanby SH, Deng ZD. Electric field characteristics of rotating permanent magnet stimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.06.24302359. [PMID: 38370769 PMCID: PMC10871468 DOI: 10.1101/2024.02.06.24302359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Neurostimulation devices that use rotating permanent magnets are being explored for their potential therapeutic benefits in patients with psychiatric and neurological disorders. This study aims to characterize the electric field (E-field) for ten configurations of rotating magnets using finite element analysis and phantom measurements. Various configurations were modeled, including single or multiple magnets, bipolar or multipolar magnets, rotated at 10, 13.3, and 400 Hz. E-field strengths were also measured using a hollow sphere ( r = 9.2 cm) filled with a 0.9% sodium chloride solution and with a dipole probe. The E-field spatial distribution is determined by the magnets' dimensions, number of poles, direction of the magnetization, and axis of rotation, while the E-field strength is determined by the magnets' rotational frequency and magnetic field strength. The induced E-field strength on the surface of the head ranged between 0.0092 and 0.59 V/m. At the range of rotational frequencies applied, the induced E-field strengths were approximately an order or two of magnitude lower than those delivered by conventional transcranial magnetic stimulation. The impact of rotational frequency on E-field strength represents a previously unrecognized confound in clinical trials that seek to personalize stimulation frequency to individual neural oscillations and may represent a mechanism to explain some clinical trial results.
Collapse
|
8
|
Sousani M, Seydnejad SR, Ghahramani M. Insights from a model based study on optimizing non invasive brain electrical stimulation for Parkinson's disease. Sci Rep 2024; 14:2447. [PMID: 38291112 PMCID: PMC10828384 DOI: 10.1038/s41598-024-52355-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
Parkinson's Disease (PD) is a disorder in the central nervous system which includes symptoms such as tremor, rigidity, and Bradykinesia. Deep brain stimulation (DBS) is the most effective method to treat PD motor symptoms especially when the patient is not responsive to other treatments. However, its invasiveness and high risk, involving electrode implantation in the Basal Ganglia (BG), prompt recent research to emphasize non-invasive Transcranial Electrical Stimulation (TES). TES proves to be effective in treating some PD symptoms with inherent safety and no associated risks. This study explores the potential of using TES, to modify the firing pattern of cells in BG that are responsible for motor symptoms in PD. The research employs a mathematical model of the BG to examine the impact of applying TES to the brain. This is conducted using a realistic head model incorporating the Finite Element Method (FEM). According to our findings, the firing pattern associated with Parkinson's disease shifted towards a healthier firing pattern through the use of tACS. Employing an adaptive algorithm that continually monitored the behavior of BG cells (specifically, Globus Pallidus Pars externa (GPe)), we determined the optimal electrode number and placement to concentrate the current within the intended region. This resulted in a peak induced electric field of 1.9 v/m at the BG area. Our mathematical modeling together with precise finite element simulation of the brain and BG suggests that proposed method effectively mitigates Parkinsonian behavior in the BG cells. Furthermore, this approach ensures an improvement in the condition while adhering to all safety constraints associated with the current injection into the brain.
Collapse
Affiliation(s)
- Maryam Sousani
- Faculty of Science and Technology, University of Canberra, Bruce, Canberra, 2617, ACT, Australia.
| | - Saeid R Seydnejad
- Department of Electrical Engineering, Shahid Bahonar University of Kerman, Pajoohesh Sq., Kerman, Kerman, Iran
| | - Maryam Ghahramani
- Faculty of Science and Technology, University of Canberra, Bruce, Canberra, 2617, ACT, Australia
| |
Collapse
|
9
|
Kang Q, Lang EJ, Sahin M. Transsynaptic entrainment of cerebellar nuclear cells by alternating currents in a frequency dependent manner. Front Neurosci 2023; 17:1282322. [PMID: 38027520 PMCID: PMC10667418 DOI: 10.3389/fnins.2023.1282322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive neuromodulation technique that is being tested clinically for treatment of a variety of neural disorders. Animal studies investigating the underlying mechanisms of tACS are scarce, and nearly absent in the cerebellum. In the present study, we applied 10-400 Hz alternating currents (AC) to the cerebellar cortex in ketamine/xylazine anesthetized rats. The spiking activity of cerebellar nuclear (CN) cells was transsynaptically entrained to the frequency of AC stimulation in an intensity and frequency-dependent manner. Interestingly, there was a tuning curve for modulation where the frequencies in the midrange (100 and 150 Hz) were more effective, although the stimulation frequency for maximum modulation differed for each CN cell with slight dependence on the stimulation amplitude. CN spikes were entrained with latencies of a few milliseconds with respect to the AC stimulation cycle. These short latencies and that the transsynaptic modulation of the CN cells can occur at such high frequencies strongly suggests that PC simple spike synchrony at millisecond time scales is the underlying mechanism for CN cell entrainment. These results show that subthreshold AC stimulation can induce such PC spike synchrony without resorting to supra-threshold pulse stimulation for precise timing. Transsynaptic entrainment of deep CN cells via cortical stimulation could help keep stimulation currents within safety limits in tACS applications, allowing development of tACS as an alternative treatment to deep cerebellar stimulation. Our results also provide a possible explanation for human trials of cerebellar stimulation where the functional impacts of tACS were frequency dependent.
Collapse
Affiliation(s)
- Qi Kang
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, United States
| | - Eric J. Lang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York City, NY, United States
| | - Mesut Sahin
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
10
|
Guidetti M, Maria Bianchi A, Parazzini M, Maiorana N, Bonato M, Ferrara R, Libelli G, Montemagno K, Ferrucci R, Priori A, Bocci T. Monopolar tDCS might affect brainstem reflexes: A computational and neurophysiological study. Clin Neurophysiol 2023; 155:44-54. [PMID: 37690391 DOI: 10.1016/j.clinph.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVE To assess whether monopolar multi-electrode transcranial direct current stimulation (tDCS) montages might selectively affect deep brain structures through computational predictions and neurophysiological assessment. METHODS Electric field distribution in deep brain structures (i.e., thalamus and midbrain) were estimated through computational models simulating tDCS with two monopolar and two monopolar multi-electrode montages. Monopolar multi-electrode tDCS was then applied to healthy subject, and effects on pontine and medullary circuitries was evaluated studying changes in blink reflex (BR) and masseter inhibitory reflex (MIR). RESULTS Computational results suggest that tDCS with monopolar multi-electrode montages might induce electric field intensities in deep brain structure comparable to those in grey matter, while neurophysiological results disclosed that BR and MIR were selectively modulated by tDCS only when cathode was placed over the right deltoid. CONCLUSIONS Multi-electrode tDCS (anodes over motor cortices, cathode over right deltoid) could induce significant electric fields in the thalamus and midbrain, and selectively affect brainstem neural circuits. SIGNIFICANCE Multi-electrode tDCS (anodes over motor cortices, cathode over right deltoid) might be further explored to affect brainstem activity, also in the context of non-invasive deep brain stimulation.
Collapse
Affiliation(s)
- Matteo Guidetti
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Anna Maria Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy
| | - Marta Parazzini
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), CNR, 20133 Milan, Italy
| | - Natale Maiorana
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Marta Bonato
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), CNR, 20133 Milan, Italy
| | - Rosanna Ferrara
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Giorgia Libelli
- Neurology Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Kora Montemagno
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Roberta Ferrucci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; Clinical Neurology Unit, "Azienda Socio-Sanitaria Territoriale Santi Paolo E Carlo", Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Alberto Priori
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; Clinical Neurology Unit, "Azienda Socio-Sanitaria Territoriale Santi Paolo E Carlo", Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Tommaso Bocci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; Clinical Neurology Unit, "Azienda Socio-Sanitaria Territoriale Santi Paolo E Carlo", Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
11
|
de Lima-Pardini AC, Mikhail Y, Dominguez-Vargas AU, Dancause N, Scott SH. Transcranial magnetic stimulation in non-human primates: A systematic review. Neurosci Biobehav Rev 2023; 152:105273. [PMID: 37315659 DOI: 10.1016/j.neubiorev.2023.105273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/06/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
Transcranial magnetic stimulation (TMS) is widely employed as a tool to investigate and treat brain diseases. However, little is known about the direct effects of TMS on the brain. Non-human primates (NHPs) are a valuable translational model to investigate how TMS affects brain circuits given their neurophysiological similarity with humans and their capacity to perform complex tasks that approach human behavior. This systematic review aimed to identify studies using TMS in NHPs as well as to assess their methodological quality through a modified reference checklist. The results show high heterogeneity and superficiality in the studies regarding the report of the TMS parameters, which have not improved over the years. This checklist can be used for future TMS studies with NHPs to ensure transparency and critical appraisal. The use of the checklist would improve methodological soundness and interpretation of the studies, facilitating the translation of the findings to humans. The review also discusses how advancements in the field can elucidate the effects of TMS in the brain.
Collapse
Affiliation(s)
- Andrea C de Lima-Pardini
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada.
| | - Youstina Mikhail
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Adan-Ulises Dominguez-Vargas
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Numa Dancause
- Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, QC, Canada; Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Department of Medicine, Queen's University, Kingston, ON, Canada; Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim), Montréal, QC, Canada
| |
Collapse
|
12
|
Guidetti M, Giannoni-Luza S, Bocci T, Pacheco-Barrios K, Bianchi AM, Parazzini M, Ionta S, Ferrucci R, Maiorana NV, Verde F, Ticozzi N, Silani V, Priori A. Modeling Electric Fields in Transcutaneous Spinal Direct Current Stimulation: A Clinical Perspective. Biomedicines 2023; 11:1283. [PMID: 37238953 PMCID: PMC10216237 DOI: 10.3390/biomedicines11051283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Clinical findings suggest that transcutaneous spinal direct current stimulation (tsDCS) can modulate ascending sensitive, descending corticospinal, and segmental pathways in the spinal cord (SC). However, several aspects of the stimulation have not been completely understood, and realistic computational models based on MRI are the gold standard to predict the interaction between tsDCS-induced electric fields and anatomy. Here, we review the electric fields distribution in the SC during tsDCS as predicted by MRI-based realistic models, compare such knowledge with clinical findings, and define the role of computational knowledge in optimizing tsDCS protocols. tsDCS-induced electric fields are predicted to be safe and induce both transient and neuroplastic changes. This could support the possibility to explore new clinical applications, such as spinal cord injury. For the most applied protocol (2-3 mA for 20-30 min, active electrode over T10-T12 and the reference on the right shoulder), similar electric field intensities are generated in both ventral and dorsal horns of the SC at the same height. This was confirmed by human studies, in which both motor and sensitive effects were found. Lastly, electric fields are strongly dependent on anatomy and electrodes' placement. Regardless of the montage, inter-individual hotspots of higher values of electric fields were predicted, which could change when the subjects move from a position to another (e.g., from the supine to the lateral position). These characteristics underlines the need for individualized and patient-tailored MRI-based computational models to optimize the stimulation protocol. A detailed modeling approach of the electric field distribution might contribute to optimizing stimulation protocols, tailoring electrodes' configuration, intensities, and duration to the clinical outcome.
Collapse
Affiliation(s)
- Matteo Guidetti
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (T.B.); (N.V.M.)
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
| | - Stefano Giannoni-Luza
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology—University of Lausanne, Jules Gonin Eye Hospital/Fondation Asile des Aveugles, 1015 Lausanne, Switzerland; (S.G.-L.); (S.I.)
| | - Tommaso Bocci
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (T.B.); (N.V.M.)
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy;
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA 02129, USA;
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Lima 15024, Peru
| | - Anna Maria Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
| | - Marta Parazzini
- Istituto di Elettronica e di Ingegneria Dell’Informazione e delle Telecomunicazioni (IEIIT), Consiglio Nazionale delle Ricerche (CNR), 10129 Milan, Italy;
| | - Silvio Ionta
- Sensory-Motor Lab (SeMoLa), Department of Ophthalmology—University of Lausanne, Jules Gonin Eye Hospital/Fondation Asile des Aveugles, 1015 Lausanne, Switzerland; (S.G.-L.); (S.I.)
| | - Roberta Ferrucci
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy;
- Department of Oncology and Hematology, University of Milan, 20122 Milan, Italy
| | - Natale Vincenzo Maiorana
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (T.B.); (N.V.M.)
| | - Federico Verde
- Department of Neurology, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy; (F.V.); (N.T.); (V.S.)
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, 20122 Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy; (F.V.); (N.T.); (V.S.)
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, 20122 Milan, Italy
| | - Vincenzo Silani
- Department of Neurology, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy; (F.V.); (N.T.); (V.S.)
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, 20122 Milan, Italy
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.G.); (T.B.); (N.V.M.)
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy;
| |
Collapse
|
13
|
Panthi S, Ekker M. Animal Models of Neurological Disorders: Where Are We Now? Biomedicines 2023; 11:biomedicines11051253. [PMID: 37238924 DOI: 10.3390/biomedicines11051253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The Special Issue "Animal Models of Neurological Disorders: Where Are We Now [...].
Collapse
Affiliation(s)
- Sandesh Panthi
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Marc Ekker
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
14
|
Guidetti M, Naci A, Cerri A, Pagani R, Previtera AM, Priori A, Bocci T. Shock waves modulate corticospinal excitability: A proof of concept for further rehabilitation purposes? Restor Neurol Neurosci 2023; 41:219-228. [PMID: 38217555 DOI: 10.3233/rnn-231371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Background Focal extracorporeal shock wave therapy (fESWT) is a physical therapy vastly studied and used for various musculoskeletal disorders. However, the effect of fESWT on central nervous system is still to be determined. Objective To elucidate spinal and supra-spinal mechanisms of fESWT in healthy subjects, in order to widen the spectrum of its clinical applications. Methods In this quasi-experimental, unblinded, proof-of-concept clinical study, 10 voluntary healthy subjects underwent fESWT and were assessed immediately before (T0), immediately after (T1) and seven days after (T2) the intervention. As neurophysiological outcomes, motor evoked potentials (resting motor threshold, maximal motor evoked potential and maximal compound muscle action potential ratio, cortical silent period, total conduction motor time, direct and indirect central motor conduction time), F-waves (minimal and mean latency, persistence and temporal dispersion) and H-reflex (threshold, amplitude, maximal H reflex and maximal compound muscle action potential ratio, latency) were considered. Results Resting motor threshold and F-waves temporal dispersion significantly decreased, respectively, from T1 and T2 and from T0 and T2 (for both, p < 0.05). H-reflex threshold increase between T0 and T1. Analysis disclosed a strong negative correlation between Δ3 cortical silent period (i.e., T2 -T1 recordings) and Δ1 Hr threshold (i.e., T1 -T0 recordings) (r = -0.66, p < 0.05), and a positive strong relationship between Δ3 cortical silent period and Δ3 Hr threshold (r = 0.63, p < 0.05). Conclusions fESWT modulates corticospinal tract excitability in healthy volunteers, possibly inducing an early inhibition followed by a later facilitation after one week.
Collapse
Affiliation(s)
- Matteo Guidetti
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Milan, Italy
| | - Anisa Naci
- Neurophysiology Unit, Foundation Istituto di Ricerca e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Cerri
- Rehabilitation Unit, "Azienda Socio-Sanitaria Territoriale Santi Paolo E Carlo", Department of Health Sciences, University of Milan, Milan, Italy
| | - Rossella Pagani
- Rehabilitation Unit, "Azienda Socio-Sanitaria Territoriale Santi Paolo E Carlo", Department of Health Sciences, University of Milan, Milan, Italy
| | - Antonino Michele Previtera
- Rehabilitation Unit, "Azienda Socio-Sanitaria Territoriale Santi Paolo E Carlo", Department of Health Sciences, University of Milan, Milan, Italy
| | - Alberto Priori
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Milan, Italy
- Clinical Neurology Unit, "Azienda Socio-Sanitaria Territoriale Santi Paolo E Carlo", Department of Health Sciences, University of Milan, Milan, Italy
| | - Tommaso Bocci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Milan, Italy
- Clinical Neurology Unit, "Azienda Socio-Sanitaria Territoriale Santi Paolo E Carlo", Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Neuroprotection and Non-Invasive Brain Stimulation: Facts or Fiction? Int J Mol Sci 2022; 23:ijms232213775. [PMID: 36430251 PMCID: PMC9692544 DOI: 10.3390/ijms232213775] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Non-Invasive Brain Stimulation (NIBS) techniques, such as transcranial Direct Current Stimulation (tDCS) and repetitive Magnetic Transcranial Stimulation (rTMS), are well-known non-pharmacological approaches to improve both motor and non-motor symptoms in patients with neurodegenerative disorders. Their use is of particular interest especially for the treatment of cognitive impairment in Alzheimer's Disease (AD), as well as axial disturbances in Parkinson's (PD), where conventional pharmacological therapies show very mild and short-lasting effects. However, their ability to interfere with disease progression over time is not well understood; recent evidence suggests that NIBS may have a neuroprotective effect, thus slowing disease progression and modulating the aggregation state of pathological proteins. In this narrative review, we gather current knowledge about neuroprotection and NIBS in neurodegenerative diseases (i.e., PD and AD), just mentioning the few results related to stroke. As further matter of debate, we discuss similarities and differences with Deep Brain Stimulation (DBS)-induced neuroprotective effects, and highlight possible future directions for ongoing clinical studies.
Collapse
|
16
|
Jiang H, Wang M, Wu D, Zhang J, Zhang S. In Vivo Measurements of Transcranial Electrical Stimulation in Lesioned Human Brain: A Case Report. Brain Sci 2022; 12:1455. [PMID: 36358381 PMCID: PMC9688390 DOI: 10.3390/brainsci12111455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2024] Open
Abstract
Transcranial electrical stimulation (tES) has been utilized widely in populations with brain lesions, such as stroke patients. The tES-generated electric field (EF) within the brain is considered as one of the most important factors for physiological effects. However, it is still unclear how brain lesions may influence EF distribution induced by tES. In this case study, we reported in vivo measurements of EF in one epilepsy participant with brain lesions during different tES montages. With the in vivo EF data measured by implanted stereo-electroencephalography (sEEG) electrodes, the simulation model was investigated and validated. Our results demonstrate that the prediction ability of the current simulation model may be degraded in the lesioned human brain.
Collapse
Affiliation(s)
- Hongjie Jiang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310030, China
| | - Minmin Wang
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
- Binjiang Institute of Zhejiang University, Hangzhou 310051, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| | - Dan Wu
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
- Binjiang Institute of Zhejiang University, Hangzhou 310051, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310030, China
- Binjiang Institute of Zhejiang University, Hangzhou 310051, China
| | - Shaomin Zhang
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, School of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|