1
|
Al-Naimi MS, Abu-Raghif AR, Mansoor AFA, Fawzi HA. Isofraxidin Attenuates Lipopolysaccharide-Induced Cytokine Release in Mice Lung and Liver Tissues via Inhibiting Inflammation and Oxidative Stress. Biomedicines 2025; 13:653. [PMID: 40149629 PMCID: PMC11940160 DOI: 10.3390/biomedicines13030653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Isofraxidin is a hydroxylcoumarin derived from herbal Fraxinus and Eleutherococcus. It has been shown that isofraxidin has antioxidant, anti-inflammatory, anti-diabetic, and anti-lipidemic effects. The study aimed to examine the therapeutic effects of isofraxidin with and without methylprednisolone to ameliorate lipopolysaccharide (LPS)-induced cytokine-releasing syndrome. Methods: The study comprised two phases: preventive and therapeutic. In all the experiments that involved LPS induction, a single dose of LPS (5 mg/kg) was used. The preventive phase involved the administration of the agents before LPS induction, in which 50 mg/kg of methylprednisolone, 15 mg/kg of isofraxidin, or a combination of 7.5 mg/kg of isofraxidin plus 25 mg/kg methylprednisolone were given daily for 3 days before induction. The therapeutic phase involved the administration of the following agents after LPS induction: 50 mg/kg methylprednisolone, 15 mg/kg of isofraxidin, or a combination of 7.5 mg/kg of isofraxidin plus 25 mg/kg methylprednisolone were given once daily was given for 7 days. Results: Isofraxidin treatment with or without methylprednisolone ameliorates LPS-induced inflammatory and oxidative stress damage in mice; it reduces the inflammatory (IL-6, TNF-α, IL-1β, IL-8, Malondialdehyde, and IFN-γ) and oxidative stress markers. Additionally, isofraxidin treatment with or without methylprednisolone prevented liver and lung tissue damage induced by LPS. Conclusions: Isofraxidin exhibited preventive and therapeutic properties against lipopolysaccharide-induced cytokine storms in mice via anti-inflammatory and antioxidant pathways, and its combination with methylprednisolone demonstrated synergistic outcomes.
Collapse
Affiliation(s)
- Marwa Salih Al-Naimi
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad 10006, Iraq;
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Farahidi University, Baghdad 00965, Iraq
| | - Ahmed R. Abu-Raghif
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad 10006, Iraq;
| | - Ahmed F. Abed Mansoor
- Department of Pharmacology and Toxicology, College of Pharmacy, National University of Science and Technology, Nasiriyah 64001, Iraq;
| | - Hayder Adnan Fawzi
- Department of Clinical Pharmacy, College of Pharmacy, AlMustafa University, Baghdad 10064, Iraq;
| |
Collapse
|
2
|
Chen J, Wei Y, Li N, Pi C, Zhao W, Zhong Y, Li W, Shen H, Yang Y, Zheng W, Jiang J, Liu Z, Liu K, Zhao L. Preliminary Investigation Into the Antidepressant Effects of a Novel Curcumin Analogue (CACN136) In Vitro and In Vivo. Mol Neurobiol 2025; 62:2124-2147. [PMID: 39080204 DOI: 10.1007/s12035-024-04363-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/09/2024] [Indexed: 01/28/2025]
Abstract
The aim of this study was to develop a novel antidepressant with high activity. Based on the findings of molecular docking, eight novel curcumin analogues were evaluated in vitro to check for antidepressant efficacy. Among them, CACN136 had the strongest antidepressant effect. Firstly, CACN136 had a stronger 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) radical ion scavenging ability (IC50: 17.500 ± 0.267 μg/mL) compared to ascorbic acid (IC50: 38.858 ± 0.263 μg/mL) and curcumin (27.189 ± 0.192 μg/mL). Secondly, only CACN136 demonstrated clear protective effects on cells damaged by glutamate and oxidative stress at all concentrations. Finally, only CACN136 showed ASP + inhibition and was more effective than fluoxetine hydrochloride (FLU) at low concentrations. To further confirm the antidepressant effect of CACN136 in vivo, the CUMS model was established. Following 28 days of oral administration of CUMS mice, CACN136 increased the central area residence time in the open-field test, significantly increased the sucrose preference rate in the sucrose preference test (P < 0.001) and significantly reduced the immobility period in the tail suspension test (P < 0.0001), all of which were more effective than those of FLU. Subsequent research indicated that the antidepressant properties of CACN136 were linked to a decrease in the metabolism of 5-HT and the modulation of oxidative stress levels in vivo. In particular, the activation of the Keap1-Nrf2/BDNF-TrkB signaling pathway by CACN136 resulted in elevated levels of antioxidant enzymes, enhancing the antioxidant capability in mice subjected to CUMS. In conclusion, CACN136 has the potential to treat depression and could be an effective antidepressant.
Collapse
Affiliation(s)
- Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Nong Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
| | - Yueting Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Wen Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Hongping Shen
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
| | - Wenwu Zheng
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Jiang
- Department of Thyroid Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Zerong Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, 646000, Sichuan, China.
| | - Kezhi Liu
- Department of Psychiatry, Fundamental and Clinical Research On Mental Disorders Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
| |
Collapse
|
3
|
Wang Y, Huang X, Chen H, Wu Q, Zhao Q, Fu D, Liu Q, Wang Y. The Antitumour Activity of a Curcumin and Piperine Loaded iRGD-Modified Liposome: In Vitro and In Vivo Evaluation. Molecules 2023; 28:6532. [PMID: 37764308 PMCID: PMC10535349 DOI: 10.3390/molecules28186532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Lung cancer is one of the most common cancers around the world, with a high mortality rate. Despite substantial advancements in diagnoses and therapies, the outlook and survival of patients with lung cancer remains dismal due to drug tolerance and malignant reactions. New interventional treatments urgently need to be explored if natural compounds are to be used to reduce toxicity and adverse effects to meet the needs of lung cancer clinical treatment. An internalizing arginine-glycine-aspartic acid (iRGD) modified by a tumour-piercing peptide liposome (iRGD-LP-CUR-PIP) was developed via co-delivery of curcumin (CUR) and piperine (PIP). Its antitumour efficacy was evaluated and validated via in vivo and in vitro experiments. iRGD-LP-CUR-PIP enhanced tumour targeting and cellular internalisation effectively. In vitro, iRGD-LP-CUR-PIP exhibited enhanced cellular uptake, suppression of tumour cell multiplication and invasion and energy-independent cellular uptake. In vivo, iRGD-LP-CUR-PIP showed high antitumour efficacy, mainly in terms of significant tumour volume reduction and increased weight and spleen index. Data showed that iRGD peptide has active tumour targeting and it significantly improves the penetration and cellular internalisation of tumours in the liposomal system. The use of CUR in combination with PIP can exert synergistic antitumour activity. This study provides a targeted therapeutic system based on natural components to improve antitumour efficacy in lung cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qinghua Liu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.W.); (X.H.); (H.C.); (Q.W.); (Q.Z.); (D.F.)
| | - Yinghao Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.W.); (X.H.); (H.C.); (Q.W.); (Q.Z.); (D.F.)
| |
Collapse
|
4
|
Chen G, Wen D, Shen L, Feng Y, Xiong Q, Li P, Zhao Z. Cepharanthine Exerts Antioxidant and Anti-Inflammatory Effects in Lipopolysaccharide (LPS)-Induced Macrophages and DSS-Induced Colitis Mice. Molecules 2023; 28:6070. [PMID: 37630322 PMCID: PMC10458559 DOI: 10.3390/molecules28166070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Cepharanthine (CEP), a biscoclaurine alkaloid extracted from Stephania cepharantha Hayata, has been widely used for the treatment of various acute and chronic diseases, including leukopenia, and snake bites. Here, our objective was to investigate the anti-oxidative stress and anti-inflammatory response effects of CEP in lipopolysaccharide (LPS)-induced macrophages as well as dextran sulfate sodium (DSS)-induced colitis mice. Our findings demonstrated that supplementation with CEP effectively mitigates body weight loss and elevation of disease activity index (DAI), reduces the malondialdehyde (MDA) content to 2.45 nM/mL while increasing the reduced glutathione (GSH) content to 35.53 μg/mL, inhibits inflammatory response, and maintains proper intestinal epithelium tight junctions in DSS-induced wild type (WT) mice. However, it failed to provide protective effects in DSS-induced transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) knockout (NRF2-/-) mice. GSH content decreased to 10.85 μg/106 cells following LPS treatment, whereas supplementation with CEP increased the GSH content to 12.26 μg/106 cells. Moreover, CEP effectively attenuated ROS production in LPS-induced macrophages. Additionally, CEP exhibited inhibitory effects on pro-inflammatory cytokines and mediators in LPS-induced macrophages. Furthermore, we observed that supplementation with CEP promoted the expression of NRF2/heme oxygenase 1 (HO-1)/NADPH quinone oxidoreductase-1 (NQO-1) as well as the phosphorylation of the adenosine monophosphate-activated protein kinase alpha 1 (AMPK-α1)/protein kinase B (AKT)/glycogen synthase kinase-3 beta (GSK-3β) signaling pathway in macrophages while inhibiting the phosphorylation of the extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK), and nuclear factor-kappa B p65 (NF-κB p65) signaling pathway in LPS-induced macrophages. Although CEP did not demonstrate inhibitory effects on oxidative stress or promote the expression of HO-1/NQO-1, it effectively activated the phosphorylation of the AMPK-α1/AKT/GSK-3β signaling pathway which is an upstream regulator of NRF2 in LPS-induced primary peritoneal macrophages from NRF2-/- mice. In summary, our findings suggest that CEP exerts protective effects against oxidative stress and inflammatory response by activating the AMPK-α1/AKT/GSK-3β/NRF2 signaling pathway while concurrently inhibiting the activation of mitogen activated protein kinases (MAPKs) and the NF-κB p65 signaling pathway. These results not only elucidate the mechanisms underlying CEP's protective effects on colon oxidative stress and inflammation but also provide evidence supporting NRF2 as a potential therapeutic target for IBD treatment.
Collapse
Affiliation(s)
- Guangxin Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Biological Feed, Ministry of Agriculture and Rural Afairs, Boen Biotechnology Co., Ltd., Ganzhou 341000, China
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (D.W.); (L.S.); (Y.F.); (Q.X.); (P.L.)
| | - Da Wen
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (D.W.); (L.S.); (Y.F.); (Q.X.); (P.L.)
| | - Lin Shen
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (D.W.); (L.S.); (Y.F.); (Q.X.); (P.L.)
| | - Yazhi Feng
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (D.W.); (L.S.); (Y.F.); (Q.X.); (P.L.)
| | - Qiuhong Xiong
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (D.W.); (L.S.); (Y.F.); (Q.X.); (P.L.)
| | - Ping Li
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (D.W.); (L.S.); (Y.F.); (Q.X.); (P.L.)
| | - Zhonghua Zhao
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; (D.W.); (L.S.); (Y.F.); (Q.X.); (P.L.)
| |
Collapse
|
5
|
Boujbiha MA, Chahdoura H, Adouni K, Ziani BEC, Snoussi M, Chakroun Y, Ciudad-Mulero M, Fernández-Ruiz V, Achour L, Selmi B, Morales P, Flamini G, Mosbah H. Wild Vitex agnus-castus L.: Phytochemical Characterization, Acute Toxicity, and Bioactive Properties. Molecules 2023; 28:5096. [PMID: 37446759 DOI: 10.3390/molecules28135096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Wild Vitex agnus-castus (VAC) is a Mediterranean plant that is rich in bioactive metabolites. This study aimed to validate, for the first time, the beneficial use of VAC fruits and fruit decoctions (VFDs) through in vitro and in vivo trials. Forty-one volatile components were detected in VAC fruits, with 1,8-cineole (30.3%) comprising the majority. The antioxidant activity of VFD was measured by using different in vitro methods (EC50 of 0.16 mg/mL by β-carotene bleaching inhibition assay) and by measuring the DNA protection power. Using the disc diffusion assay, the antimicrobial activity of VFD was evaluated, and it exhibited a noticeable anticandidal activity. VFD did not cause any toxicity or mortality in rats treated with doses > 200 mg/kg. Using the acetic acid writhing test, the antinociceptive activity of VFD was measured. Our results showed that VFD at 200 mg/kg exhibited a higher analgesic activity (81.68%) than acetylsalicylic acid used as a positive control (74.35%). Its gastroprotective ability was assessed by HCl/ethanol-induced gastric lesions, which were remarkably inhibited (84.62%) by intraperitoneal administration of VFD. This work helps to validate the popular use of VAC to treat nociceptive, inflammatory, and gastric disorders and encourages researchers to further investigate the identification of pharmacological compounds from this species.
Collapse
Affiliation(s)
- Mohamed Ali Boujbiha
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, Monastir 5000, Tunisia
| | - Hassiba Chahdoura
- Unité de Recherche "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir 5000, Tunisia
| | - Khaoula Adouni
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, Monastir 5000, Tunisia
| | | | - Mejdi Snoussi
- Department of Biology, University of Hail, Ha'il P.O. Box 81451, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorisation of Bioresources, High Institute of Biotechnology-University of Monastir, Monastir 5000, Tunisia
| | - Yasmine Chakroun
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, Monastir 5000, Tunisia
| | - María Ciudad-Mulero
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramon y Cajal, s/n, E-28040 Madrid, Spain
| | - Virginia Fernández-Ruiz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramon y Cajal, s/n, E-28040 Madrid, Spain
| | - Lotfi Achour
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, Monastir 5000, Tunisia
| | - Boulbaba Selmi
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, Monastir 5000, Tunisia
| | - Patricia Morales
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramon y Cajal, s/n, E-28040 Madrid, Spain
| | - Guido Flamini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute", Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Habib Mosbah
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Taher Hadded BP 74, Monastir 5000, Tunisia
| |
Collapse
|
6
|
Skibska B, Kochan E, Stanczak A, Lipert A, Skibska A. Antioxidant and Anti-inflammatory Effects of α-Lipoic Acid on Lipopolysaccharide-induced Oxidative Stress in Rat Kidney. Arch Immunol Ther Exp (Warsz) 2023; 71:16. [PMID: 37378741 DOI: 10.1007/s00005-023-00682-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
α-Lipoic acid (α-LA) is a naturally occurring organosulfur component. Oxidative stress plays an essential role in the pathogenesis of various diseases, such as kidney and cardiovascular diseases, diabetes, neurodegenerative disorders, cancer and aging. Kidneys are especially vulnerable to oxidative stress and damage. The aim of the study was to evaluate the effect of α-LA on lipopolysaccharide (LPS)-induced oxidative stress parameters in rat kidneys. The experimental rats were divided into four groups: I-control (0.9% NaCl i.v.); II-α-LA (60 mg/kg b.w. i.v.); III-LPS (30 mg/kg b.w. i.v.); and IV-LPS + LA (30 mg/kg b.w. i.v. and 60 mg/kg b.w. i.v., respectively). In kidney homogenates the concentration of thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), sulfhydryl groups (-SH), total protein, superoxide dismutase (SOD), total glutathione (tGSH), reduced glutathione (GSH), glutathione disulphide (GSSG) and the GSH/GSSG ratio were determined. In addition, the levels of tumour necrosis factor (TNF)-α, and interleukin (IL)-6 were measured to assess inflammation and was estimated kidney oedema. Studies have shown that α-LA administered after LPS administration attenuated kidney oedema and significantly decreased TBARS, H2O2, TNF-α, and IL-6 levels in rat kidneys. α-LA also resulted in increase -SH group, total protein, and SOD levels and ameliorated the GSH redox status when compared to the LPS group. The results suggest that α-LA plays an important role against LPS-induced oxidative stress in kidney tissue as well as downregulating the expression of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Beata Skibska
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland.
| | - Ewa Kochan
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Lodz, Poland
| | - Andrzej Stanczak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Anna Lipert
- Department of Sports Medicine, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Skibska
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Haq FU, Shoaib M, Ali Shah SW, Hussain H, Zahoor M, Ullah R, Bari A, Alotaibi A, Hayat MF. Antidepressant Activities of Synthesized Benzodiazepine Analogues in Mice. Brain Sci 2023; 13:brainsci13030523. [PMID: 36979333 PMCID: PMC10046342 DOI: 10.3390/brainsci13030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Depression is a serious psychological disorder which negatively affects human feelings and actions. The use of antidepressants is the therapy of choice while treating depression. However, such drugs are associated with severe side effects. There is a need for efficient and harmless drugs. In this connection, the present study was designed to synthesize several substituted benzodiazepine derivatives and explore their antidepressant potentials in an animal model. The chalcone backbone was initially synthesized, which was then converted into several substituted benzodiazepine derivatives designated as 1-6. The synthesized compounds were identified using spectroscopic techniques. The experimental animals (mice) after acclimatation were subjected to forced swim test (FST) and tail suspension test (TST) after oral administration of the synthesized compounds to evaluate their antidepressant potentials. At the completion of the mentioned test, the animals were sacrificed to determine GABA level in their brain hippocampus. The chloro-substituent compound (2) significantly reduced the immobility time (80.81 ± 1.14 s; p < 0.001 at 1.25 mg/kg body weight and 75.68 ± 3.73 s with p < 0.001 at 2.5 mg/kg body weight dose), whereas nitro-substituent compound (5) reduced the immobility time to 118.95 ± 1.31 and 106.69 ± 3.62 s (p < 0.001), respectively, at the tested doses (FST). For control groups, the recorded immobility time recorded was 177.24 ± 1.82 s. The standard drug diazepam significantly reduced immobility time to 70.13 ± 4.12 s while imipramine reduced it to 65.45 ± 2.81 s (p < 0.001). Similarly, in the TST, the compound 2 reduced immobility time to 74.93 ± 1.14 s (p < 0.001) and 70.38 ± 1.43 s (p < 0.001), while compound 5 reduced it to 88.23 ± 1.89 s (p < 0.001) and 91.31 ± 1.73 s (p < 0.001) at the tested doses, respectively, as compared to the control group immobility time (166.13 ± 2.18 s). The compounds 1, 3, 4, and 6 showed weak antidepressant responses as compared to compounds 2 and 5. The compounds 2 and 5 also significantly enhanced the GABA level in the brain's hippocampus of experimental animals, indicating the possible involvement of GABAergic mechanism in alleviating the depression which is evident from the significant increase in mRNA levels for the α subunit of the GABAA receptors in the prefrontal cortex of mice as well. From the results, it can be concluded that compound 2 and 5 could be used as alternative drugs of depression. However, further exploration in this connection is needed in other animal models in order to confirm the observed results in this study.
Collapse
Affiliation(s)
- Faizan Ul Haq
- Department of Pharmacy, University of Malakand, Chakdara, Lower Dir 18800, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Shoaib
- Department of Pharmacy, University of Malakand, Chakdara, Lower Dir 18800, Khyber Pakhtunkhwa, Pakistan
| | - Syed Wadood Ali Shah
- Department of Pharmacy, University of Malakand, Chakdara, Lower Dir 18800, Khyber Pakhtunkhwa, Pakistan
| | - Haya Hussain
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal 18000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Lower Dir 18800, Khyber Pakhtunkhwa, Pakistan
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Muhammad Faisal Hayat
- North West Institute of Health and Sciences, Peshawar 25100, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
8
|
Thomas SD, Jha NK, Ojha S, Sadek B. mTOR Signaling Disruption and Its Association with the Development of Autism Spectrum Disorder. Molecules 2023; 28:molecules28041889. [PMID: 36838876 PMCID: PMC9964164 DOI: 10.3390/molecules28041889] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impairments in social interaction and communication along with repetitive stereotypic behaviors. Currently, there are no specific biomarkers for diagnostic screening or treatments available for autistic patients. Numerous genetic disorders are associated with high prevalence of ASD, including tuberous sclerosis complex, phosphatase and tensin homolog, and fragile X syndrome. Preclinical investigations in animal models of these diseases have revealed irregularities in the PI3K/Akt/mTOR signaling pathway as well as ASD-related behavioral defects. Reversal of the downstream molecular irregularities, associated with mTOR hyperactivation, improved the behavioral deficits observed in the preclinical investigations. Plant bioactive molecules have shown beneficial pre-clinical evidence in ASD treatment by modulating the PI3K/Akt/mTOR pathway. In this review, we summarize the involvement of the PI3K/Akt/mTOR pathway as well as the genetic alterations of the pathway components and its critical impact on the development of the autism spectrum disorder. Mutations in negative regulators of mTORC1, such as TSC1, TSC2, and PTEN, result in ASD-like phenotypes through the disruption of the mTORC1-mediated signaling. We further discuss the various naturally occurring phytoconstituents that have been identified to be bioactive and modulate the pathway to prevent its disruption and contribute to beneficial therapeutic effects in ASD.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
9
|
High Yield Synthesis of Curcumin and Symmetric Curcuminoids: A "Click" and "Unclick" Chemistry Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010289. [PMID: 36615495 PMCID: PMC9822029 DOI: 10.3390/molecules28010289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
The worldwide known and employed spice of Asian origin, turmeric, receives significant attention due to its numerous purported medicinal properties. Herein, we report an optimized synthesis of curcumin and symmetric curcuminoids of aromatic (bisdemethoxycurcumin) and heterocyclic type, with yields going from good to excellent using the cyclic difluoro-boronate derivative of acetylacetone prepared by reaction of 2,4-pentanedione with boron trifluoride in THF (ca. 95%). The subsequent cleavage of the BF2 group is of significant importance for achieving a high overall yield in this two-step procedure. Such cleavage occurs by treatment with hydrated alumina (Al2O3) or silica (SiO2) oxides, thus allowing the target heptanoids obtained in high yields as an amorphous powder to be filtered off directly from the reaction media. Furthermore, crystallization instead of chromatographic procedures provides a straightforward purification step. The ease and efficiency with which the present methodology can be applied to synthesizing the title compounds earns the terms "click" and "unclick" applied to describe particularly straightforward, efficient reactions. Furthermore, the methodology offers a simple, versatile, fast, and economical synthetic alternative for the obtention of curcumin (85% yield), bis-demethoxycurcumin (78% yield), and the symmetrical heterocyclic curcuminoids (80-92% yield), in pure form and excellent yields.
Collapse
|
10
|
Taboada T, Alvarenga NL, Galeano AK, Arrúa WJ, Campuzano-Bublitz MA, Kennedy ML. In Vivo Antidepressant-Like Effect Assessment of Two Aloysia Species in Mice and LCMS Chemical Characterization of Ethanol Extract. Molecules 2022; 27:molecules27227828. [PMID: 36431928 PMCID: PMC9693556 DOI: 10.3390/molecules27227828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Medicinal plants belonging to the Verbenaceae family demonstrated antidepressant effects in preclinical studies. Depression is one of the largest contributors to the global health burden of all countries. Plants from the Aloysia genus are traditionally used for affective disorders, and some of them have proven anxiolytic and antidepressant activity. The aim of this work was to evaluate the antidepressant effect of the ethanolic extract of Aloysia gratissima var. gratissima (Agg) and Aloysia virgata var. platyphylla (Avp) in mice. A tail suspension test (TST) and forced swimming test (FST) were conducted after three doses in a period of 24 h and after 7 days of treatment. Imipramine was used as an antidepressant drug. The main results demonstrated that Agg extract reduced the immobility time in mice treated orally for 7 consecutive days when compared to the control group (reduced by about 77%, imipramine 70%). Animals treated with three doses of Avp in a 24-h period had reduced immobility time in the FST (60%), and after 7 days of treatment the reduction was greater (Avp 50, 100, and 200 about 85%; Avp 400, 96.5%; p < 0.0001, imipramine, 77%). LCMS analysis showed the presence of verbascoside, hoffmaniaketone, and hoffmaniaketone acetate in both, A. virgata var. platyphylla and A. gratissima var gratissima. The flavonoids nepetin and 6-hydroxyluteolin were also found in Agg. Both tested extracts demonstrated promising antidepressant-like activity in mice.
Collapse
Affiliation(s)
- Teresa Taboada
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Una, San Lorenzo 2169, Paraguay
| | - Nelson L. Alvarenga
- Departamento de Fitoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Una, San Lorenzo 2169, Paraguay
| | - Antonia K. Galeano
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Una, San Lorenzo 2169, Paraguay
| | - Wilfrido J. Arrúa
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Una, San Lorenzo 2169, Paraguay
| | - Miguel A. Campuzano-Bublitz
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Una, San Lorenzo 2169, Paraguay
| | - María L. Kennedy
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Una, San Lorenzo 2169, Paraguay
- Correspondence: or
| |
Collapse
|