1
|
Kleppel DJ, Copeland R, Hussain N, Karri J, Wang E, D'Souza RS. Methodological and statistical characteristics of meta-analyses on spinal cord stimulation for chronic pain: a systematic review. Reg Anesth Pain Med 2025; 50:358-366. [PMID: 38388015 PMCID: PMC12015056 DOI: 10.1136/rapm-2023-105249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND A growing number of meta-analyses (MA) have investigated the use of spinal cord stimulation (SCS) as a treatment modality for chronic pain. The quality of these MAs has not been assessed by validated appraisal tools. OBJECTIVE To examine the methodological characteristics and quality of MAs related to the use of SCS for chronic pain syndromes. EVIDENCE REVIEW An online literature search was conducted in Ovid MEDLINE(R), Ovid EMBASE, Ovid Cochrane Database of Systematic Reviews, and Scopus databases (January 1, 2000 through June 30, 2023) to identify MAs that investigated changes in pain intensity, opioid consumption, and/or physical function after SCS for the treatment of chronic pain. MA quality was assessed using A Measurement Tool to Assess Systematic Reviews (AMSTAR-2) critical appraisal tool. FINDINGS Twenty-five MAs were appraised in the final analysis. Three were considered "high" quality, three "low" quality, and 19 "critically low" quality, per the AMSTAR-2 criteria. There was no association between the publication year and AMSTAR-2 overall quality (β 0.043; 95% CI -0.008 to 0.095; p=0.097). There was an association between the impact factor and AMSTAR-2 overall quality (β 0.108; 95% CI 0.044 to 0.172; p=0.002), such that studies published in journals with higher impact factors were associated with higher overall quality. There was no association between the effect size and AMSTAR-2 overall quality (β -0.168; 95% CI -0.518 to 0.183; p=0.320).According to our power analysis, three studies were adequately powered (>80%) to reject the null hypothesis, while the remaining studies were underpowered (<80%). CONCLUSIONS The study demonstrates a critically low AMSTAR-2 quality for most MAs published on the use of SCS for treating chronic pain. Future MAs should improve study quality by implementing the AMSTAR-2 checklist items. PROSPERO REGISTRATION NUMBER CRD42023431155.
Collapse
Affiliation(s)
- Donald J Kleppel
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Royce Copeland
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas, USA
| | - Nasir Hussain
- Department of Anesthesiology, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Jay Karri
- Departments of Orthopedic Surgery and Anesthesiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Eric Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ryan S D'Souza
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
El Hadwe S, Wronowski F, Rehman S, Ansong Snr YO, Barone DG. Cylindrical vs Paddle Leads in Spinal Cord Stimulation for the Long-term Treatment of Chronic Pain: A Systematic Review and Meta-analysis. Neuromodulation 2025; 28:204-233. [PMID: 39601732 DOI: 10.1016/j.neurom.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVES This systematic review compares the long-term efficacy of cylindrical-lead spinal cord stimulation (CL-SCS) vs paddle-lead spinal cord stimulation (Paddle-SCS) for chronic pain management. MATERIALS AND METHODS We included prospective and retrospective studies with at least ten patients reporting on the efficacy of either lead type. Primary outcomes were pain score reduction (measured by the visual analog scale [VAS] and numeric rating scale [NRS]) and 50% pain relief after at least 12 months. Secondary outcomes included functional disability and complications, such as lead migration and infection rates. Meta-analyses compared effect sizes, while meta-regression and subgroup analyses addressed heterogeneity. RESULTS A total of 96 studies, comprising 7726 patients, met the inclusion criteria. Paddle-SCS demonstrated superior pain reduction, with a standardized mean difference (SMD) of 5.37 (95% CI [5.35, 5.38]) compared with CL-SCS, which had an SMD of 4.09 (95% CI [4.08, 4.10]) on the VAS. However, CL-SCS outperformed Paddle-SCS on the NRS, with SMDs of 4.39 vs 2.35, respectively. For 50% pain relief, Paddle-SCS had a success rate of 41.4%, as opposed to 35.4% for CL-SCS. Paddle-SCS showed a lower migration rate (4.3% vs 7.2% for CL-SCS) but higher infection rates (5.0% vs 3.3%). CONCLUSIONS Paddle-SCS offers superior pain reduction (as measured by the VAS) and a lower migration rate, but a higher infection risk compared with CL-SCS. CL-SCS showed better outcomes as measured by the NRS. The choice between Paddle-SCS and CL-SCS should be individualized according to patient-specific factors and treatment goals. Further research with rigorous study designs is needed to provide clearer comparisons between these interventions.
Collapse
Affiliation(s)
- Salim El Hadwe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Department of Engineering, University of Cambridge, Cambridge, UK
| | - Filip Wronowski
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Sara Rehman
- Newnham College, University of Cambridge, Cambridge, UK
| | | | - Damiano G Barone
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Department of Engineering, University of Cambridge, Cambridge, UK; Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
3
|
Petersen EA, Stauss TG, Scowcroft JA, Jaasma MJ, Edgar DR, White JL, Sills SM, Amirdelfan K, Guirguis MN, Xu J, Yu C, Nairizi A, Patterson DG, Creamer MJ, Galan V, Bundschu RH, Mehta ND, Sayed D, Lad SP, DiBenedetto DJ, Sethi KA, Goree JH, Bennett MT, Harrison NJ, Israel AF, Chang P, Wu PW, Argoff CE, Nasr CE, Taylor RS, Caraway DL, Mekhail NA. High-Frequency 10-kHz Spinal Cord Stimulation Provides Long-term (24-Month) Improvements in Diabetes-Related Pain and Quality of Life for Patients with Painful Diabetic Neuropathy. J Diabetes Sci Technol 2024:19322968241268547. [PMID: 39369310 PMCID: PMC11571607 DOI: 10.1177/19322968241268547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
BACKGROUND The SENZA-PDN study evaluated high-frequency 10-kHz spinal cord stimulation (SCS) for the treatment of painful diabetic neuropathy (PDN). Over 24 months, 10-kHz SCS provided sustained pain relief and improved health-related quality of life. This report presents additional outcomes from the SENZA-PDN study, focusing on diabetes-related pain and quality of life outcomes. METHODS The SENZA-PDN study randomized 216 participants with refractory PDN to receive either conventional medical management (CMM) or 10-kHz SCS plus CMM (10-kHz SCS + CMM), allowing crossover after six months if pain relief was insufficient. Postimplantation assessments at 24 months were completed by 142 participants with a permanent 10-kHz SCS implant, comprising 84 initial and 58 crossover recipients. Measures included the Brief Pain Inventory for Diabetic Peripheral Neuropathy (BPI-DPN), Diabetes-Related Quality of Life (DQOL), Global Assessment of Functioning (GAF), and treatment satisfaction. RESULTS Over 24 months, 10-kHz SCS treatment significantly reduced pain severity by 66.9% (P < .001; BPI-DPN) and pain interference with mood and daily activities by 65.8% (P < .001; BPI-DPN). Significant improvements were also observed in overall DQOL score (P < .001) and GAF score (P < .001), and 91.5% of participants reported satisfaction with treatment. CONCLUSIONS High-frequency 10-kHz SCS significantly decreased pain severity and provided additional clinically meaningful improvements in DQOL and overall functioning for patients with PDN. The robust and sustained benefits over 24 months, coupled with high participant satisfaction, highlight that 10-kHz SCS is an efficacious and comprehensive therapy for patients with PDN.
Collapse
Affiliation(s)
- Erika A Petersen
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | | | | - Shawn M Sills
- Touchstone Interventional Pain Center, Medford, OR, USA
| | | | | | - Jijun Xu
- Department of Pain Management, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Cong Yu
- Swedish Medical Center, Seattle, WA, USA
| | - Ali Nairizi
- Nevada Advanced Pain Specialists, Reno, NV, USA
| | | | | | | | | | - Neel D Mehta
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Dawood Sayed
- Department of Anesthesiology and Pain Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | - Khalid A Sethi
- Department of Neurosurgery, United Health Services, Johnson City, NY, USA
| | - Johnathan H Goree
- Department of Anesthesiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Matthew T Bennett
- Department of Neurosurgery, United Health Services, Johnson City, NY, USA
| | | | | | | | - Paul W Wu
- Holy Cross Hospital, Fort Lauderdale, FL, USA
| | | | - Christian E Nasr
- Division of Endocrinology, Department of Internal Medicine, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Rod S Taylor
- MRC/CSO Social and Public Health Sciences Unit, Robertson Centre for Biostatistics, School of Health and Well Being, University of Glasgow, Glasgow, UK
| | | | - Nagy A Mekhail
- Evidence-Based Pain Management Research, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
4
|
Klonoff DC, Levy BL, Jaasma MJ, Bharara M, Edgar DR, Nasr C, Caraway DL, Petersen EA, Armstrong DG. Treatment of Painful Diabetic Neuropathy with 10 kHz Spinal Cord Stimulation: Long-Term Improvements in Hemoglobin A1c, Weight, and Sleep Accompany Pain Relief for People with Type 2 Diabetes. J Pain Res 2024; 17:3063-3074. [PMID: 39308991 PMCID: PMC11416775 DOI: 10.2147/jpr.s463383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Purpose The recent SENZA-PDN study showed that high-frequency (10kHz) spinal cord stimulation (SCS) provided significant, durable pain relief for individuals with painful diabetic neuropathy (PDN), along with secondary benefits, including improved sleep quality and HRQoL. Given that metabolic factors and chronic neuropathic pain are related, we evaluated potential secondary effects of 10kHz SCS on hemoglobin A1c (HbA1c) and weight in SENZA-PDN participants with type 2 diabetes (T2D). Patients and Methods This analysis included 144 participants with T2D and lower limb pain due to PDN who received 10kHz SCS during the SENZA-PDN study. Changes in HbA1c, weight, pain intensity, and sleep were evaluated over 24 months, with participants stratified according to preimplantation HbA1c (>7% and >8%) and body mass index (BMI; ≥30 and ≥35 kg/m2). Results At 24 months, participants with preimplantation HbA1c >7% and >8% achieved clinically meaningful and statistically significant mean reductions in HbA1c of 0.5% (P = 0.031) and 1.1% (P = 0.004), respectively. Additionally, we observed a significant mean weight loss of 3.1 kg (P = 0.003) across all study participants. In subgroups with BMI ≥30 and ≥35 kg/m2, weight reductions at 24 months were 4.1 kg (P = 0.001) and 5.4 kg (P = 0.005), respectively. These reductions were accompanied by a mean pain reduction of 79.8% and a mean decrease in pain interference with sleep of 65.2% at 24 months across all cohorts. Conclusion This is the first study of SCS to demonstrate long-term, significant, and clinically meaningful reductions in HbA1c and weight in study participants with PDN and T2D, particularly among those with elevated preimplantation HbA1c and BMI. Although the mechanism for these improvements has yet to be established, the results suggest possible direct and indirect metabolic benefits with 10kHz SCS in addition to durable pain relief. Trial Registration ClincalTrials.gov Identifier, NCT03228420.
Collapse
Affiliation(s)
- David C Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| | - Brian L Levy
- New York University Grossman School of Medicine, New York, NY, USA
| | | | | | | | - Christian Nasr
- Division of Endocrinology, Department of Internal Medicine, The University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | | | - Erika A Petersen
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - David G Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Zhou PB, Sun HT, Bao M. Comparative Analysis of the Efficacy of Spinal Cord Stimulation and Traditional Debridement Care in the Treatment of Ischemic Diabetic Foot Ulcers: A Retrospective Cohort Study. Neurosurgery 2024; 95:313-321. [PMID: 38334381 PMCID: PMC11219160 DOI: 10.1227/neu.0000000000002866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Spinal cord stimulation (SCS) is an effective treatment for diabetic peripheral neuropathy. The purpose of this study was to investigate the effectiveness of SCS in the treatment of ischemic diabetic foot ulcers. METHODS In this retrospective study, the SCS group comprised 102 patients with ischemic diabetic foot who were treated with SCS for foot ulcers and nonhealing wounds due to severe lower limb ischemia. The traditional debridement care (TDC) group comprised 104 patients with ischemic diabetic foot who received only TDC. Strict screening criteria were applied. The assignment of patients to either group depended solely on their willingness to be treated with SCS. Secondary end points were transcutaneous partial pressure of oxygen (PtcO 2 ), ankle-brachial index (ABI), and color Doppler of the lower limb arteries in the feet at 6 months and 12 months after treatment. The primary end point was the amputation. RESULTS The dorsal foot PtcO 2 and ABI of the patients in the SCS group were significantly improved at 6 months and 12 months postoperation ( P < .05). The therapeutic efficacy was significantly better than that of the TDC group over the same period of time ( P < .05). The degree of vasodilation of the lower limb arteries (ie, femoral, popliteal, posterior tibial, and dorsalis pedis arteries) on color Doppler was higher in the SCS group than in the TDC group ( P < .05). The odds ratios for total amputation at 6 and 12 months postoperatively in the SCS group were 0.45 (95% CI, 0.19-1.08) and 0.17 (95% CI, 0.08-0.37), respectively, compared with the TDC group. CONCLUSION SCS improved symptoms of lower limb ischemia in ischemic diabetic feet and reduced the rate of toe amputation by increasing PtcO 2 , ABI, and arterial vasodilation in the lower limbs.
Collapse
Affiliation(s)
- Peng-Bo Zhou
- The First School of Clinical Medical, Lanzhou University, Lanzhou, Gansu, People's Republic of China
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, People's Republic of China
| | - Hong-Tao Sun
- The First School of Clinical Medical, Lanzhou University, Lanzhou, Gansu, People's Republic of China
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, People's Republic of China
| | - Min Bao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
6
|
Chitneni A, Jain E, Sahni S, Mavrocordatos P, Abd-Elsayed A. Spinal Cord Stimulation Waveforms for the Treatment of Chronic Pain. Curr Pain Headache Rep 2024; 28:595-605. [PMID: 38607547 DOI: 10.1007/s11916-024-01247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE OF REVIEW Since the advent of spinal cord stimulation (SCS), advances in technology have allowed for improvement and treatment of various conditions, especially chronic pain. Additionally, as the system has developed, the ability to provide different stimulation waveforms for patients to treat different conditions has improved. The purpose and objective of the paper is to discuss basics of waveforms and present the most up-to-date literature and research studies on the different types of waveforms that currently exist. During our literature search, we came across over sixty articles that discuss the various waveforms we intend to evaluate. RECENT FINDINGS There are several publications on several waveforms used in clinical practice, but to our knowledge, this is the only educational document teaching on waveforms which provides essential knowledge. There is a gap of knowledge related to understanding wave forms and how they work.
Collapse
Affiliation(s)
- Ahish Chitneni
- Department of Rehabilitation and Regenerative Medicine, New York-Presbyterian Hospital - Columbia and Cornell, New York, NY, USA
| | - Esha Jain
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY, USA
| | | | | | - Alaa Abd-Elsayed
- Department of Anesthesia, Division of Pain Medicine, School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, Madison, WI, B6/319 CSC53792-3272, USA.
| |
Collapse
|
7
|
Tieppo Francio V, Alm J, Leavitt L, Mok D, Yoon BV, Nazir N, Lam C, Latif U, Sowder T, Braun E, Sack A, Khan T, Sayed D. Variables associated with nonresponders to high-frequency (10 kHz) spinal cord stimulation. Pain Pract 2024; 24:584-599. [PMID: 38078593 DOI: 10.1111/papr.13328] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
INTRODUCTION The use of spinal cord stimulation (SCS) therapy to treat chronic pain continues to rise. Optimal patient selection remains one of the most important factors for SCS success. However, despite increased utilization and the existence of general indications, predicting which patients will benefit from neuromodulation remains one of the main challenges for this therapy. Therefore, this study aims to identify the variables that may correlate with nonresponders to high-frequency (10 kHz) SCS to distinguish the subset of patients less likely to benefit from this intervention. MATERIALS AND METHODS This was a retrospective single-center observational study of patients who underwent 10 kHz SCS implant. Patients were divided into nonresponders and responders groups. Demographic data and clinical outcomes were collected at baseline and statistical analysis was performed for all continuous and categorical variables between the two groups to calculate statistically significant differences. RESULTS The study population comprised of 237 patients, of which 67.51% were responders and 32.49% were nonresponders. There was a statistically significant difference of high levels of kinesiophobia, high self-perceived disability, greater pain intensity, and clinically relevant pain catastrophizing at baseline in the nonresponders compared to the responders. A few variables deemed potentially relevant, such as age, gender, history of spinal surgery, diabetes, alcohol use, tobacco use, psychiatric illness, and opioid utilization at baseline were not statistically significant. CONCLUSION Our study is the first in the neuromodulation literature to raise awareness to the association of high levels of kinesiophobia preoperatively in nonresponders to 10 kHz SCS therapy. We also found statistically significant differences with greater pain intensity, higher self-perceived disability, and clinically relevant pain catastrophizing at baseline in the nonresponders relative to responders. It may be appropriate to screen for these factors preoperatively to identify patients who are less likely to respond to SCS. If these modifiable risk factors are present, it might be prudent to consider a pre-rehabilitation program with pain neuroscience education to address these factors prior to SCS therapy, to enhance successful outcomes in neuromodulation.
Collapse
Affiliation(s)
- Vinicius Tieppo Francio
- Department of Physical Medicine and Rehabilitation, The University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - John Alm
- Department of Physical Medicine and Rehabilitation, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Logan Leavitt
- Department of Physical Medicine and Rehabilitation, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Daniel Mok
- Department of Physical Medicine and Rehabilitation, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - B Victor Yoon
- Department of Physical Medicine and Rehabilitation, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Niaman Nazir
- Department of Population Health, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Christopher Lam
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Usman Latif
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Timothy Sowder
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Edward Braun
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Andrew Sack
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Talal Khan
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Dawood Sayed
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
8
|
Boulton AJM, Jensen TS, Luecke T, Petersen EA, Pop-Busui R, Taylor RS, Tesfaye S, Vileikyte L, Ziegler D. Where does spinal cord stimulation fit into the international guidelines for refractory painful diabetic neuropathy? a consensus statement. Diabetes Res Clin Pract 2023; 206 Suppl 1:110763. [PMID: 38245326 DOI: 10.1016/j.diabres.2023.110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Although pharmacotherapy with anticonvulsants and/or antidepressants can be effective for many people with painful diabetic neuropathy (PDN), albeit with frequent side-effects, a critical juncture occurs when neuropathic pain no longer responds to standard first- and second-step mono- and dual therapy and becomes refractory. Subsequent to these pharmacotherapeutic approaches, third-line treatment options for PDN may include opioids (short-term), capsaicin 8% patches, and spinal cord stimulation (SCS). AIM This document summarizes consensus recommendations regarding appropriate treatment for refractory peripheral diabetic neuropathy (PDN), based on outcomes from an expert panel convened on December 10, 2022, as part of the Worldwide Initiative for Diabetes Education Virtual Global Summit, "Advances in the Management of Painful Diabetic Neuropathy." PARTICIPANTS Nine attendees, eminent physicians and academics, comprising six diabetes specialists, two pain specialists, and one health services expert. EVIDENCE For individuals with refractory PDN, opioids are a high-risk option that do not provide a long-term solution and should not be used. For appropriately selected individuals, SCS is an effective, safe, and durable treatment option. In particular, high-frequency (HF) SCS (10 kHz) shows strong efficacy and improves quality of life. To ensure treatment success, strict screening criteria should be used to prioritize candidates for SCS. CONSENSUS PROCESS Each participant voiced their opinion after reviewing available data, and a verbal consensus was reached during the meeting. CONCLUSION Globally, the use of opioids should rarely be recommended for refractory, severe PDN. Based on increasing clinical evidence, SCS, especially HF-SCS, should be considered as a treatment for PDN that is not responsive to first- or second-line monotherapy/dual therapy.
Collapse
Affiliation(s)
| | - T S Jensen
- International Diabetic Neuropathy Consortium, Aarhus University, Aarhus, Denmark
| | - T Luecke
- Pain Center, Franziskus Hospital Linz, Vice President, German Pain Society, Linz am Rhein, Germany
| | - E A Petersen
- University of Arkansas for Medical Sciences, AR, USA
| | - R Pop-Busui
- Metabolism, Endocrinology, and Diabetes, University of Michigan, MI, USA
| | | | - S Tesfaye
- Sheffield Teaching Hospitals and the University of Sheffield, Sheffield, UK
| | | | - D Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
9
|
Xu X, Fu Y, Bao M. Comparison Between the Efficacy of Spinal Cord Stimulation and of Endovascular Revascularization in the Treatment of Diabetic Foot Ulcers: A Retrospective Observational Study. Neuromodulation 2023; 26:1424-1432. [PMID: 37610397 DOI: 10.1016/j.neurom.2023.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE We aimed to compare the effects of spinal cord stimulation (SCS) with those of endovascular revascularization on the treatment of diabetic foot ulcers. MATERIALS AND METHODS A total of 104 patients with diabetic foot ulcers who met the inclusion criteria were retrospectively analyzed and classified to the SCS treatment group (n = 46) and endovascular revascularization treatment group (n = 46). The quality-of-life scores (Quality of Life Scale for Patients with Liver Cancer v2.0), visual pain analog scale score, lower limb skin temperature, lower limb arterial ultrasound results, and lower extremity electromyography results were analyzed to compare the efficacy of the two treatments for diabetic foot ulcers in the two groups before surgery and six months after surgery. RESULTS A total of 92 patients (men: 73.9%, mean age: 66.51 ± 11.67 years) completed the six-month postoperative follow-up period. The patients in the SCS treatment group had a higher quality-of-life score (25.54% vs 13.77%, p < 0.05), a larger reduction in pain scores (69.18% vs 37.21%, p < 0.05), and a larger reduction in foot temperature (18.56% vs 7.24%, p < 0.05) than those of the endovascular revascularization treatment group at six months after surgery. The degree of vasodilation in the lower limbs on color Doppler arterial ultrasound and the nerve conduction velocity were higher in the SCS treatment group than in the endovascular revascularization treatment group at six months after surgery (p < 0.05). CONCLUSION SCS was more effective than endovascular revascularization in improving quality of life, relieving pain, improving lower limb skin temperature, increasing lower limb blood flow, and improving nerve conduction in patients with diabetic foot ulcers at six months after surgery.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Fu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Bao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Mayoral Rojals V, Amescua Garcia C, Denegri P, Narvaez Tamayo MA, Varrassi G. The Invasive Management of Pain: Diagnosis and New Treatment Options. Cureus 2023; 15:e42717. [PMID: 37654942 PMCID: PMC10466260 DOI: 10.7759/cureus.42717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Both the diagnosis and treatment of pain are evolving, especially in interventional approaches. Diagnosis of low back pain combines old and new methodologies, in particular, it involves an expanded role for ultrasound. While low back pain is a common complaint, there are many etiologies to the condition which must be explored before a final diagnosis can be made and treatment planned. Tumors and infections are rarely involved in low back pain but should be ruled out in the initial phase itself since failing to address them early can have devastating consequences. Some invasive treatments seem promising in the management of low back pain. Treating musculoskeletal pain with regenerative medicine, such as platelet-rich plasma, holds great promise. Autologous blood products are safe and may help stimulate the body's own responses for regeneration. The so-called "orthobiologics" play a role in sports medicine and the treatment of musculoskeletal pain. Neuromodulation, especially spinal cord stimulation, is undergoing a renaissance with new waveforms, devices, and a greater albeit incomplete understanding of its mechanisms of action. Spinal cord stimulation is not a first-line therapy and not all patients or all back problems respond to this treatment. Nevertheless, the therapy can be safe, effective, and cost-effective with appropriate patient selection. Radiofrequency ablation of nerves in the form of neurotomy can be effective in reducing the pain of osteoarthritis. These procedures, including the newer cooled radiofrequency neurotomy, can restore function, reduce pain, and may potentially have an opioid-sparing effect. Technical expertise in nerve and anatomy is needed for the use of this technique. This review article aims to provide updated information on some invasive intervention techniques in pain management.
Collapse
Affiliation(s)
| | | | - Pasquale Denegri
- Anesthesia, Intensive Care, and Pain Medicine, Sant'Anna and San Sebastiano Hospital, Caserta, ITA
| | | | | |
Collapse
|