1
|
Grossini E, Venkatesan S, Ola Pour MM. Mitochondrial Dysfunction in Endothelial Cells: A Key Driver of Organ Disorders and Aging. Antioxidants (Basel) 2025; 14:372. [PMID: 40298614 DOI: 10.3390/antiox14040372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Mitochondria are of great importance in cell biology since they are major sites of adenosine triphosphate (ATP) production and are widely involved in different cellular pathways involved in the response to stress. During ATP production, reactive oxygen species (ROS) can be produced. While a small amount of ROS may be important for the regulation of physiological processes, at elevated levels they can turn into harmful agents leading to cellular damage. From a pathological perspective, it could be particularly interesting to focus on mitochondrial function in endothelial cells since they may be involved in the development of aging and in the onset of different diseases, including renal, cardio-metabolic, liver and neurodegenerative ones. However, to date, there are no surveys which address the above issues. To fill this gap, it may be valuable to collect recent findings about the role of mitochondria in the regulation of endothelial function, not only to increase knowledge about it but also for clinical applications. Here, we overview the most recent knowledge about the above issues in the view of characterizing the role of mitochondria in endothelial cells as an innovative potential target for the prevention of aging, as well as the treatment of the above pathological conditions.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Mohammad Mostafa Ola Pour
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
2
|
Grossini E, Venkatesan S, Pour MMO, Conti A, Concina D, Opizzi A, Sanguedolce A, Rinaldi C, Russotto S, Gramaglia CM, Zeppegno P, Panella M. Beneficial effects of a combined lifestyle intervention for older people in a long-term-care facility on redox balance and endothelial function. Heliyon 2024; 10:e35850. [PMID: 39220897 PMCID: PMC11363854 DOI: 10.1016/j.heliyon.2024.e35850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Objective It has recently been highlighted how a short healthy life-style program (LSP) can improve the functional outcomes of older people admitted to a Long-Term Care (LTC) facility. Although it is known that life-style medicine-based interventions can exert anti-aging effects through the modulation of oxidative stress and mitochondrial function, the mechanisms underlying the aforementioned effects have not been clarified, yet. For this reason, in this study, the outcomes were focused on the investigation of the possible mechanisms underlying the benefits of a short LSP in older people. This was achieved by examining circulating markers of oxidative stress and immunosenescence, such as Tymosin β (Tβ4), before and after LSP and the effects of plasma of older people undergone or not LSP on endothelial cells. Methods Fifty-four older people were divided into two groups (n = 27 each): subjects undergoing LSP and subjects not undergoing LSP (control). The LSP consisted of a combination of caloric restriction, physical activity, and psychological intervention and lasted 3 months. Plasma samples were taken before (T0) and after LSP (T1) and were used to measure thiobarbituric acid reactive substances (TBARS), 8-hydroxy-2-deoxyguanosine (8OHdG), 8-Isoprostanes (IsoP), glutathione (GSH), superoxide dismutase (SOD) activity and Tβ4. In addition, plasma was used to stimulate human vascular endothelial cells (HUVEC), which were examined for cell viability, mitochondrial membrane potential, reactive oxygen species (ROS) and mitochondrial ROS (MitoROS) release. Results At T1, in LSP group we did not detect the increase of plasma TBARS and IsoP, which was observed in control. Also, plasma levels of 8OHdG were lower in LSP group vs control. In addition, LSP group only showed an increase of plasma GSH and SOD activity. Moreover, plasma levels of Tβ4 were more preserved in LSP group. Finally, at T1, in HUVEC treated with plasma from LSP group only we found an increase of the mitochondrial membrane potential and a reduction of ROS and MitoROS release in comparison with T0. Conclusions The results of this study showed that a short LSP in older persons exerts antiaging effects by modulating oxidative stress also at cellular levels. Implications of those findings could be related to both prognostic and therapeutic strategies, which could be pursued as antiaging methods.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Sakthipryian Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Mohammad Mostafa Ola Pour
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Andrea Conti
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Doctoral Program in Food, Health, and Longevity, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Diego Concina
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Doctoral Program in Food, Health, and Longevity, Università del Piemonte Orientale, 28100 Novara, Italy
- Anteo Impresa Sociale, 13900 Biella, Italy
| | - Annalisa Opizzi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Doctoral Program in Food, Health, and Longevity, Università del Piemonte Orientale, 28100 Novara, Italy
- Anteo Impresa Sociale, 13900 Biella, Italy
| | - Agatino Sanguedolce
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Carmela Rinaldi
- Education and Research area, Health Professions' Direction, Maggiore Della Carità Hospital, Novara, Italy
| | - Sophia Russotto
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Doctoral Program in Sports and Health - Patient Safety line, Universitas Miguel Hernandez, Alicante, Spain
- Residency Program of Psychiatry, Università del Piemonte Orientale, Novara, Italy
| | - Carla Maria Gramaglia
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Patrizia Zeppegno
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Massimiliano Panella
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
3
|
Grossini E, De Marchi F, Venkatesan S, Mele A, Ferrante D, Mazzini L. Effects of Acetyl-L-Carnitine on Oxidative Stress in Amyotrophic Lateral Sclerosis Patients: Evaluation on Plasma Markers and Members of the Neurovascular Unit. Antioxidants (Basel) 2023; 12:1887. [PMID: 37891966 PMCID: PMC10604350 DOI: 10.3390/antiox12101887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress, the alteration of mitochondrial function, and the neurovascular unit (NVU), play a role in Amyotrophic Lateral Sclerosis (ALS) pathogenesis. We aimed to demonstrate the changes in the plasma redox system and nitric oxide (NO) in 32 new ALS-diagnosed patients in treatment with Acetyl-L-Carnitine (ALCAR) compared to healthy controls. We also evaluated the effects of plasma on human umbilical cord-derived endothelial vascular cells (HUVEC) and astrocytes. The analyses were performed at the baseline (T0), after three months (T1), and after six months (T2). In ALS patients at T0/T1, the plasma markers of lipid peroxidation, thiobarbituric acid reactive substances (TBARS) and 4-hydroxy nonenal (4-HNE) were higher, whereas the antioxidants, glutathione (GSH) and the glutathione peroxidase (GPx) activity were lower than in healthy controls. At T2, plasma TBARS and 4-HNE decreased, whereas plasma GSH and the GPx activity increased in ALS patients. As regards NO, the plasma levels were firmly lower at T0-T2 than those of healthy controls. Cell viability, and mitochondrial membrane potential in HUVEC/astrocytes treated with the plasma of ALS patients at T0-T2 were reduced, while the oxidant release increased. Those results, which confirmed the fundamental role of oxidative stress, mitochondrial function, and of the NVU in ALS pathogenesis, can have a double meaning, acting as disease markers at baseline and potential markers of drug effects in clinical practice and during clinical trials.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (E.G.); (S.V.)
| | - Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (E.G.); (S.V.)
| | - Angelica Mele
- ALS Center, Neurology Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Daniela Ferrante
- Statistic Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (F.D.M.); (A.M.)
| |
Collapse
|
4
|
Grossini E, Smirne C, Venkatesan S, Tonello S, D'Onghia D, Minisini R, Cantaluppi V, Sainaghi PP, Comi C, Tanzi A, Bussolati B, Pirisi M. Plasma Pattern of Extracellular Vesicles Isolated from Hepatitis C Virus Patients and Their Effects on Human Vascular Endothelial Cells. Int J Mol Sci 2023; 24:10197. [PMID: 37373343 DOI: 10.3390/ijms241210197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatitis C virus (HCV) patients are at increased risk of cardiovascular disease (CVD). In this study, we aimed to evaluate the role of extracellular vesicles (EVs) as pathogenic factors for the onset of HCV-related endothelial dysfunction. Sixty-five patients with various stages of HCV-related chronic liver disease were enrolled in this case series. Plasma EVs were characterized and used to stimulate human vascular endothelial cells (HUVEC), which were examined for cell viability, mitochondrial membrane potential, and reactive oxygen species (ROS) release. The results showed that EVs from HCV patients were mainly of endothelial and lymphocyte origin. Moreover, EVs were able to reduce cell viability and mitochondrial membrane potential of HUVEC, while increasing ROS release. Those harmful effects were reduced by the pretreatment of HUVEC with the NLR family pyrin domain containing 3 (NLRP3)/AMP-activated protein kinase and protein kinase B blockers. In conclusion, in HCV patients, we could highlight a circulating pattern of EVs capable of inducing damage to the endothelium. These data represent a novel possible pathogenic mechanism underlying the reported increase of CVD occurrence in HCV infection and could be of clinical relevance also in relation to the widespread use of antiviral drugs.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Carlo Smirne
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Stelvio Tonello
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Davide D'Onghia
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Rosalba Minisini
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Vincenzo Cantaluppi
- Nephrology Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Pier Paolo Sainaghi
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- CAAD-Center for Autoimmune and Allergic Diseases, and IRCAD-Interdisciplinary Research Center for Autoimmune Diseases, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Sant'Andrea Hospital, 13100 Vercelli, Italy
| | - Adele Tanzi
- Molecular Biotechnology Center "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Turin, Italy
| | - Benedetta Bussolati
- Molecular Biotechnology Center "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, 10124 Turin, Italy
| | - Mario Pirisi
- Internal Medicine Unit, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Maggiore della Carità Hospital, 28100 Novara, Italy
| |
Collapse
|