1
|
Vendrig LM, Ten Hoor MAC, König BH, Lekkerkerker I, Renkema KY, Schreuder MF, van der Zanden LFM, van Eerde AM, Groen In 't Woud S, Mulder J, Westland R. Translational strategies to uncover the etiology of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 2025; 40:685-699. [PMID: 39373868 PMCID: PMC11753331 DOI: 10.1007/s00467-024-06479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/08/2024]
Abstract
While up to 50% of children requiring kidney replacement therapy have congenital anomalies of the kidney and urinary tract (CAKUT), they represent only a fraction of the total patient population with CAKUT. The extreme variability in clinical outcome underlines the fundamental need to devise personalized clinical management strategies for individuals with CAKUT. Better understanding of the pathophysiology of abnormal kidney and urinary tract development provides a framework for precise diagnoses and prognostication of patients, the identification of biomarkers and disease modifiers, and, thus, the development of personalized strategies for treatment. In this review, we provide a state-of-the-art overview of the currently known genetic causes, including rare variants in kidney and urinary tract development genes, genomic disorders, and common variants that have been attributed to CAKUT. Furthermore, we discuss the impact of environmental factors and their interactions with developmental genes in kidney and urinary tract malformations. Finally, we present multi-angle translational modalities to validate candidate genes and environmental factors and shed light on future strategies to better understand the molecular underpinnings of CAKUT.
Collapse
Affiliation(s)
- Lisanne M Vendrig
- Department of Pediatric Nephrology, Amsterdam UMC-Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Mayke A C Ten Hoor
- Division of Nephrology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Benthe H König
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris Lekkerkerker
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsten Y Renkema
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Sander Groen In 't Woud
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaap Mulder
- Division of Nephrology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
- Division of Nephrology, Department of Pediatrics, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rik Westland
- Department of Pediatric Nephrology, Amsterdam UMC-Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Barakat AJ, Butler MG. Genetics of anomalies of the kidney and urinary tract with congenital heart disease: A review. Clin Genet 2024; 106:667-678. [PMID: 39289831 DOI: 10.1111/cge.14615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) and congenital heart disease (CHD) are the most common congenital defects and constitute a major cause of morbidity in children. Anomalies of both systems may be isolated or associated with congenital anomalies of other organ systems. Various reports support the co-occurrence of CAKUT and CHD, although the prevalence can vary. Cardiovascular anomalies occur in 11.2% to 34% of patients with CAKUT, and CAKUT occur in 5.3% to 35.8% of those with CHD. The co-occurrence of genetic factors in both CAKUT and CHD would raise common etiologies including genetics, genetic-environmental interactions, or shared molecular mechanisms and pathways such as NODAL, NOTCH, BMP, WNT, and VEGF. Studies in animal models and humans have indicated a genetic etiology for CHD and CAKUT with hundreds of genes recognized and thousands of entries, found in a catalog of human genetic disorders. There are over 80 CAKUT genes and over 100 CHD genes available for clinical testing. For example, the HNFIB gene accounts for 5% to 31% of reported cases of CAKUT. In view of the association between CAKUT and CHD, a thorough cardiac examination should be performed in patients with CAKUT, and a similar evaluation for CAKUT in the presence of CHD. This will allow early diagnosis and therapeutic intervention to improve the long- term outcome of patients affected, and test for at-risk family members. We present here evidence for an association of anomalies involving the two organ systems, and discuss possible etiologies of targeted genes, their functions, biological processes and interactions on embryogenesis.
Collapse
Affiliation(s)
- Amin J Barakat
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | - Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
3
|
Groen in ‘t Woud S, van Gelder MMHJ, van Rooij IALM, Feitz WFJ, Roeleveld N, Schreuder MF, van der Zanden LFM. Genetic and environmental factors driving congenital solitary functioning kidney. Nephrol Dial Transplant 2024; 39:463-472. [PMID: 37738450 PMCID: PMC10899751 DOI: 10.1093/ndt/gfad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Congenital solitary functioning kidney (CSFK) is an anomaly predisposing to hypertension, albuminuria and chronic kidney disease. Its aetiology is complex and includes genetic and environmental factors. The role of gene-environment interactions (G×E), although relevant for other congenital anomalies, has not yet been investigated. Therefore, we performed a genome-wide G×E analysis with six preselected environmental factors to explore the role of these interactions in the aetiology of CSFK. METHODS In the AGORA (Aetiologic research into Genetic and Occupational/environmental Risk factors for Anomalies in children) data- and biobank, genome-wide single-nucleotide variant (SNV) data and questionnaire data on prenatal exposure to environmental risk factors were available for 381 CSFK patients and 598 healthy controls. Using a two-step strategy, we first selected independent significant SNVs associated with one of the six environmental risk factors. These SNVs were subsequently tested in G×E analyses using logistic regression models, with Bonferroni-corrected P-value thresholds based on the number of SNVs selected in step one. RESULTS In step one, 7-40 SNVs were selected per environmental factor, of which only rs3098698 reached statistical significance (P = .0016, Bonferroni-corrected threshold 0.0045) for interaction in step two. The interaction between maternal overweight and this SNV, which results in lower expression of the Arylsulfatase B (ARSB) gene, could be explained by lower insulin receptor activity in children heterozygous for rs3098698. Eight other G×E interactions had a P-value <.05, of which two were biologically plausible and warrant further study. CONCLUSIONS Interactions between genetic and environmental factors may contribute to the aetiology of CSFK. To better determine their role, large studies combining data on genetic and environmental risk factors are warranted.
Collapse
Affiliation(s)
- Sander Groen in ‘t Woud
- Radboud University Medical Center, Department for Health Evidence, Nijmegen, The Netherlands
- Radboudumc Amalia Children's Hospital, Department of Paediatric Nephrology, Nijmegen, The Netherlands
| | | | - Iris A L M van Rooij
- Radboud University Medical Center, Department for Health Evidence, Nijmegen, The Netherlands
| | - Wout F J Feitz
- Radboudumc Amalia Children's Hospital, Division of Pediatric Urology, Department of Urology, Nijmegen, The Netherlands
| | - Nel Roeleveld
- Radboud University Medical Center, Department for Health Evidence, Nijmegen, The Netherlands
| | - Michiel F Schreuder
- Radboudumc Amalia Children's Hospital, Department of Paediatric Nephrology, Nijmegen, The Netherlands
| | - Loes F M van der Zanden
- Radboud University Medical Center, Department for Health Evidence, Nijmegen, The Netherlands
| |
Collapse
|