1
|
Del Grosso A, Carpi S, De Sarlo M, Scaccini L, Colagiorgio L, Alabed HBR, Angella L, Pellegrino RM, Tonazzini I, Emiliani C, Cecchini M. Chronic Rapamycin administration via drinking water mitigates the pathological phenotype in a Krabbe disease mouse model through autophagy activation. Biomed Pharmacother 2024; 173:116351. [PMID: 38422660 DOI: 10.1016/j.biopha.2024.116351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
Krabbe disease (KD) is a rare disorder arising from the deficiency of the lysosomal enzyme galactosylceramidase (GALC), leading to the accumulation of the cytotoxic metabolite psychosine (PSY) in the nervous system. This accumulation triggers demyelination and neurodegeneration, and despite ongoing research, the underlying pathogenic mechanisms remain incompletely understood, with no cure currently available. Previous studies from our lab revealed the involvement of autophagy dysfunctions in KD pathogenesis, showcasing p62-tagged protein aggregates in the brains of KD mice and heightened p62 levels in the KD sciatic nerve. We also demonstrated that the autophagy inducer Rapamycin (RAPA) can partially reinstate the wild type (WT) phenotype in KD primary cells by decreasing the number of p62 aggregates. In this study, we tested RAPA in the Twitcher (TWI) mouse, a spontaneous KD mouse model. We administered the drug ad libitum via drinking water (15 mg/L) starting from post-natal day (PND) 21-23. We longitudinally monitored the mouse motor performance through grip strength and rotarod tests, and a set of biochemical parameters related to the KD pathogenesis (i.e. autophagy markers expression, PSY accumulation, astrogliosis and myelination). Our findings demonstrate that RAPA significantly enhances motor functions at specific treatment time points and reduces astrogliosis in TWI brain, spinal cord, and sciatic nerves. Utilizing western blot and immunohistochemistry, we observed a decrease in p62 aggregates in TWI nervous tissues, corroborating our earlier in-vitro results. Moreover, RAPA treatment partially removes PSY in the spinal cord. In conclusion, our results advocate for considering RAPA as a supportive therapy for KD. Notably, as RAPA is already available in pharmaceutical formulations for clinical use, its potential for KD treatment can be rapidly evaluated in clinical trials.
Collapse
Affiliation(s)
- Ambra Del Grosso
- Istituto Nanoscienze - CNR, Pisa, Piazza San Silvestro 12, Pisa 56127, Italy; Laboratorio NEST, Scuola Normale Superiore, Piazza S. Silvestro 12, 56127, Pisa, Italy.
| | - Sara Carpi
- Istituto Nanoscienze - CNR, Pisa, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Miriam De Sarlo
- Istituto Nanoscienze - CNR, Pisa, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Luca Scaccini
- Laboratorio NEST, Scuola Normale Superiore, Piazza S. Silvestro 12, 56127, Pisa, Italy
| | - Laura Colagiorgio
- Istituto Nanoscienze - CNR, Pisa, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Husam B R Alabed
- Department of Chemistry, Biology, and Biotechnologies, University of Perugia, Perugia, Italy
| | - Lucia Angella
- Istituto Nanoscienze - CNR, Pisa, Piazza San Silvestro 12, Pisa 56127, Italy
| | | | - Ilaria Tonazzini
- Istituto Nanoscienze - CNR, Pisa, Piazza San Silvestro 12, Pisa 56127, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology, and Biotechnologies, University of Perugia, Perugia, Italy
| | - Marco Cecchini
- Istituto Nanoscienze - CNR, Pisa, Piazza San Silvestro 12, Pisa 56127, Italy.
| |
Collapse
|
2
|
Maghazachi AA. Globoid Cell Leukodystrophy (Krabbe Disease): An Update. Immunotargets Ther 2023; 12:105-111. [PMID: 37928748 PMCID: PMC10625317 DOI: 10.2147/itt.s424622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
Globoid cell leukodystrophy or Krabbe is a disease that affects children as well as adults who have mutations in the gene encoding the enzyme galactosylceramidase/galctocerebrosidase (GALC), resulting in the deposition of the toxic lipid D-galactosyl-beta1-1' sphingosine (GalSph or psychosine). Several therapeutic modalities were used to treat patients with Krabbe disease, including hematopoietic stem cell transplantation, enzyme replacement therapy, autophagy activators, intravenous immunoglobulin, and inhibitors of the Pyroptosis process, among many other approaches. In this article, I will briefly discuss the disease in both human and animal model, describe recent clinical observations as well as methods utilizing genetic analysis for diagnosis, and finally review recent advances in treating this rare and devastating disease.
Collapse
|
3
|
Alabed HBR, Del Grosso A, Bellani V, Urbanelli L, Carpi S, De Sarlo M, Bertocci L, Colagiorgio L, Buratta S, Scaccini L, Frongia Mancini D, Tonazzini I, Cecchini M, Emiliani C, Pellegrino RM. Untargeted Lipidomic Approach for Studying Different Nervous System Tissues of the Murine Model of Krabbe Disease. Biomolecules 2023; 13:1562. [PMID: 37892244 PMCID: PMC10605133 DOI: 10.3390/biom13101562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Krabbe disease is a rare neurodegenerative disease with an autosomal recessive character caused by a mutation in the GALC gene. The mutation leads to an accumulation of psychosine and a subsequent degeneration of oligodendrocytes and Schwann cells. Psychosine is the main biomarker of the disease. The Twitcher mouse is the most commonly used animal model to study Krabbe disease. Although there are many references to this model in the literature, the lipidomic study of nervous system tissues in the Twitcher model has received little attention. This study focuses on the comparison of the lipid profiles of four nervous system tissues (brain, cerebellum, spinal cord, and sciatic nerve) in the Twitcher mouse compared to the wild-type mouse. Altogether, approximately 230 molecular species belonging to 19 lipid classes were annotated and quantified. A comparison at the levels of class, molecular species, and lipid building blocks showed significant differences between the two groups, particularly in the sciatic nerve. The in-depth study of the lipid phenotype made it possible to hypothesize the genes and enzymes involved in the changes. The integration of metabolic data with genetic data may be useful from a systems biology perspective to gain a better understanding of the molecular basis of the disease.
Collapse
Affiliation(s)
- Husam B. R. Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
| | - Ambra Del Grosso
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
| | - Valeria Bellani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sara Carpi
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
| | - Miriam De Sarlo
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
| | - Lorenzo Bertocci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
| | - Laura Colagiorgio
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
| | - Luca Scaccini
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
| | - Dorotea Frongia Mancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
| | - Ilaria Tonazzini
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
| | - Marco Cecchini
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (A.D.G.); (S.C.); (M.D.S.); (L.C.); (L.S.); (I.T.); (M.C.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy; (H.B.R.A.); (V.B.); (L.U.); (L.B.); (S.B.); (D.F.M.); (C.E.)
| |
Collapse
|